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1.1: Introduction
We begin our study of partial differential equations with first order partial differential equations. Before doing so, we need to
define a few terms.

Recall (see the appendix on differential equations) that an -th order ordinary differential equation is an equation for an unknown
function  that expresses a relationship between the unknown function and its first  derivatives. One could write this generally
as

Here  represents the th derivative of . Furthermore, and initial value problem consists of the differential equation plus
the values of the first  derivatives at a particular value of the independent variable, say :

If conditions are instead provided at more than one value of the independent variable, then we have a boundary value problem.

If the unknown function is a function of several variables, then the derivatives are partial derivatives and the resulting equation is a
partial differential equation. Thus, if , a general partial differential equation might take the form

Since the notation can get cumbersome, there are different ways to write the partial derivatives. First order derivatives could be
written as

Note, we are assuming that  has continuous partial derivatives. Then, according to Clairaut’s Theorem (Alexis Claude
Clairaut, 1713-1765) , mixed partial derivatives are the same.

Examples of some of the partial differential equation treated in this book are shown in Table 2.1.1. However, being that the highest
order derivatives in these equation are of second order, these are second order partial differential equations. In this chapter we will
focus on first order partial differential equations. Examples are given by

For function of two variables, which the above are examples, a general first order partial differential equation for  is
given as

This equation is too general. So, restrictions can be placed on the form, leading to a classification of first order equations. A linear
first order partial differential equation is of the form

Note that all of the coefficients are independent of  and its derivatives and each term in linear in  or .

We can relax the conditions on the coefficients a bit. Namely, we could assume that the equation is linear only in  and . This
gives the quasilinear first order partial differential equation in the form

n

y(x) n

F ( (x), (x), … , (x), y(x), x) = 0.y(n) y(n−1) y′ (1.1.1)

(x)y(n) n y(x)

n −1 x0

( ) = , ( ) = , … , y( ) = .y(n−1) x0 yn−1 y(n−2) x0 yn−2 x0 y0 (1.1.2)

u = u(x, y, …)

F (x, y, … , u, , , … , , …) = 0.
∂u

∂x

∂u

∂y

u∂2

∂x2
(1.1.3)

, , u, u.
∂u

∂x
ux ∂x Dx

, , u, u.
u∂2

∂x2
uxx ∂xx D2

x

= , , u, u.
u∂2

∂x∂y

u∂2

∂y∂x
uxy ∂xy DyDx

u(x, y, …)

+ut ux

+uut ux

+uut ux

3 −2 +uux uy

= 0.

= 0.

= u.

= x.

u = u(x, y)

F (x, y, u, , ) = 0, (x, y) ∈ D ⊂ .ux uy R2 (1.1.4)

a(x, y) +b(x, y) +c(x, y)u = f(x, y).ux uy (1.1.5)

u u, ,ux uy

ux uy
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Note that the -term was absorbed by .

In between these two forms we have the semilinear first order partial differential equation in the form

Here the left side of the equation is linear in ,  and . However, the right hand side can be nonlinear in .

For the most part, we will introduce the Method of Characteristics for solving quasilinear equations. But, let us first consider the
simpler case of linear first order constant coefficient partial differential equations.

This page titled 1.1: Introduction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

a(x, y, u) +b(x, y, u) = f(x, y, u).ux uy (1.1.6)

u f(x, y, u)

a(x, y) +b(x, y) = f(x, y, u).ux uy (1.1.7)

u ux uy u
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1.2: Linear Constant Coefficient Equations
Let’s consider the linear first order constant coefficient partial differential equation

for  and  constants with . We will consider how such equations might be solved. We do this by considering two
cases,  and .

Integrating this equation and solving for , we have

Here  is an arbitrary function of .

For the second case, , we have to solve the equation

It would help if we could find a transformation which would eliminate one of the derivative terms reducing this problem to the
previous case. That is what we will do.

We first note that

Recall from multivariable calculus that the last term is nothing but a directional derivative of  in the direction .
[Actually, it is proportional to the directional derivative if  is not a unit vector.]

Figure : Coordinate systems for transforming  into  using the transformation 
and .

Therefore, we seek to write the partial differential equation as involving a derivative in the direction  but not in a directional
orthogonal to this. In Figure  we depict a new set of coordinates in which the  direction is orthogonal to .

We consider the transformation

a +b +cu = f(x, y),ux uy (1.2.1)

a, b, c + > 0a2 b2

b = 0 b ≠ 0

u(x, y)

μ(x)u(x, y)

u(x, y)e x
c

a

u(x, y)

= ∫ f(ξ, y)μ(ξ)dξ+g(y)
1

a

= ∫ f(ξ, y) dξ+g(y)
1

a
e ξ

c

a

= ∫ f(ξ, y) dξ+g(y) .
1

a
e (ξ−x)c

a e− xc

a (1.2.2)

g(y) y

b ≠ 0

a +b +cu = f .ux uy

a +bux uy = (ai +bj) ⋅ ( i + j)ux uy

= (ai +bj) ⋅ ∇u. (1.2.3)

u(x, y) ai +bj

ai +bj

1.2.1 a + b + cu = fux uy b + cv = fvz w = bx−ay

z = y

ai +bj

1.2.1 w ai +bj
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We first note that this transformation is invertible,

Next we consider how the derivative terms transform. Let . Then, we have

Therefore, the partial differential equation becomes

This is now in the same form as in the first case and can be solved using an integrating factor.

Find the general solution of the equation .

Solution
First, we transform the equation into new coordinates.

and . The,

Using this integrating factor, we can solve the differential equation for .
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w

z

= bx−ay,

= y. (1.2.4)

x

y

= (w+az),
1

b
= z. (1.2.5)

u(x, y) = v(w, z)

a +bux uy = a v(w, z) +b v(w, z),
∂

∂x

∂

∂y

= a[ + ]
∂v

∂w

∂w

∂x

∂v

∂z

∂z

∂x

+b [ + ]
∂v

∂w

∂w

∂y

∂v

∂z

∂z

∂y

= a[b +0 ⋅ ] +b[−a + ]vw vz vw vz

= b .vz (1.2.6)

b +cv= f ( (w+az), z) .vz
1

b

 Example 1.2.1

3 −2 +u = xux uy

w = bx−ay = −2x−3y,

z = y

−2ux uy = 3[−2 +0 ⋅ ] −2[−3 + ]vw vz vw vz

= −2 .vz (1.2.7)

v(w, z)

( v)
∂

∂z
e−z/2

v(w, z)e−z/2

v(w, z)

u(x, y)

= (w+3z) ,
1

4
e−z/2

= (w+3ξ) dξ
1

4
∫

z

e−ξ/2

= − (w+6 +3z) +c(w)
1

2
e−z/2

= − (w+6 +3z) +c(w)
1

2
ez/2

= x−3 +c(−2x−3y) .ey/2 (1.2.8)
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1.3: Quasilinear Equations - The Method of Characteristics

Geometric Interpretation

We consider the quasilinear partial differential equation in two independent variables,

Let  be a solution of this equation. Then,

describes the solution surface, or integral surface.

We recall from multivariable, or vector, calculus that the normal to the integral surface is given by the gradient function,

Now consider the vector of coefficients,  and the dot product with the gradient above:

This is the left hand side of the partial differential equation. Therefore, for the solution surface we have

or  is perpendicular to . Since  is normal to the surface,  is tangent to the surface. Geometrically,  defines a
direction field, called the characteristic field. These are shown in Figure .

Characteristics
We seek the forms of the characteristic curves such as the one shown in Figure . Recall that one can parametrize space curves,

The tangent to the curve is then

However, in the last section we saw that  for the partial differential equation 
. This gives the parametric form of the characteristic curves as

Another form of these equations is found by relating the differentials, , to the coefficients in the differential equation.
Since  and , we have

Similarly, we can show that

All of these relations can be summarized in the form

How do we use these characteristics to solve quasilinear partial differential equations? Consider the next example.

a(x, y, u) +b(x, y, u) −c(x, y, u) = 0.ux uy (1.3.1)

u = u(x, y)

f(x, y, u) = u(x, y) −u = 0

∇f = ( , , −1).ux uy

v = (a, b, c)

v ⋅ ∇f = a +b −c.ux uy

v ⋅ ∇f = 0,

v ∇f ∇f v = (a, b, c) v

1.3.1

1.3.1

c(t) = (x(t), y(t), u(t)), t ∈ [ , ].t1 t2

v(t) = =( , , ) .
dc(t)

dt

dx

dt

dy

dt

du

dt

v(t) = (a, b, c)

a(x, y, u) +b(x, y, u) −c(x, y, u) = 0ux uy

= a, = b, = c.
dx

dt

dy

dt

du

dt
(1.3.2)

dx, dy, du

x = x(t) y = y(t)

= = .
dy

dx

dy/dt

dx/dt

b

a

= , = .
du

dx

c

a

du

dy

c

b

dt = = = .
dx

a

dy

b

du

c
(1.3.3)
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Find the general solution: .

Solution
We first identify  and . The relations between the differentials is

We can pair the differentials in three ways:

Only two of these relations are independent. We focus on the first pair.

The first equation gives the characteristic curves in the xy-plane. This equation is easily solved to give

The second equation can be solved to give .

The goal is to find the general solution to the differential equation. Since , the integration “constant” is not really a
constant, but is constant with respect to . It is in fact an arbitrary constant function. In fact, we could view it as a function of 

, the constant of integration in the first equation. Thus, we let  for  and arbitrary function. Since ,
we can write the general solution of the differential equation as

Solve the advection equation, , for  a constant, and , , .

Solution
The characteristic equations are

and the parametric equations are given by

These equations imply that

.
.

As before, we can write  as an arbitrary function of . However, before doing so, let’s replace  with the variable  and
then we have that

where  is an arbitrary function. Furthermore, we see that  indicates that the solution is a wave moving in
one direction in the shape of the initial function, . This is known as a traveling wave. A typical traveling wave is shown in
Figure .

 Example 1.3.1

+ −u = 0ux uy

a = 1, b = 1, c = u

= = .
dx

1

dy

1

du

u

= 1, = u, = u.
dy

dx

du

dx

du

dy

y = x+ .c1

u = c2e
x

u = u(x, y)

x

c1 = G( )c2 c1 G = y−xc1

u(x, y) = G(y−x) .ex

 Example 1.3.2

+c = 0ut ux c u = u(x, t) |x| < ∞ t > 0

dτ = = =
dt

1

dx

c

du

0
(1.3.4)

= c, = 0.
dx

dτ

du

dτ
(1.3.5)

u = const. = c1

x = ct+const. = ct+c2

c1 c2 c1 ξ

ξ = x−ct, u(x, t) = f(ξ) = f(x−ct)

f u(x, t) = f(x−ct)

f(x)

1.3.2
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Figure : Depiction of a traveling wave.  at  travels without changing shape.

Note that since , we have

This implies that  constant along the characteristics, .

As with ordinary differential equations, the general solution provides an infinite number of solutions of the differential equation. If
we want to pick out a particular solution, we need to specify some side conditions. We investigate this by way of examples.

Find solutions of  subject to .

Solution
We found the general solution to the partial differential equation as . The side condition tells us that 

 along . This requires

Thus, . Replacing  with , we find

Thus, the side condition has allowed for the determination of the arbitrary function . Inserting this function, we have

Side conditions could be placed on other curves. For the general line, , we have  and for , 
. As we will see, it is possible that a given side condition may not yield a solution. We will see that conditions have

to be given on non-characteristic curves in order to be useful.

Find solutions of  for

a.  and
b.  on .

Solution

1.3.2 u(x, t) = f(x) t = 0

u = u(x, t)

0 = +cut ux

= +
∂u

∂t

dx

dt

∂u

∂x

= .
du(x(t), t

dt
(1.3.6)

u(x, t) = = cdx

dt

 Example 1.3.3

+ −u = 0ux uy u(x, 0) = 1

u(x, y) = G(y−x)ex

u = 1 y = 0

1 = u(x, 0) = G(−x) .ex

G(−x) = e−x x −z

G(z) = .ez

G(y−x)

u(x, y) = G(y−x) = = .ex ey−xex ey

y = mx+d u(x,mx+d) = g(x) x = d

u(d, y) = g(y)

 Example 1.3.4

3 −2 +u = xux uy

u(x, x) = x

u(x, y) = 0 3y+2x = 1
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Before applying the side condition, we find the general solution of the partial differential equation. Rewriting the differential
equation in standard form, we have

The characteristic equations are

These equations imply that

 
This implies that the characteristic curves (lines) are .

 
This is a linear first order differential equation, . It can be solved using the integrating factor,

As before, we write  as an arbitrary function of . This gives the general solution

Note that this is the same answer that we had found in Example 1.1.1

Now we can look at any side conditions and use them to determine particular solutions by picking out specific ’s.

a.  
This states that  along the line . Inserting this condition into the general solution, we have

or

Letting ,

3 −2 = x = u.ux uy

= = .
dx

3

dy

−2

du

x−u
(1.3.7)

−2dx = 3dy

2x+3y = c1

= (x−u).du

dx
1
3

+ u = xdu

dx
1
3

1
3

μ(x) = exp( dξ) = .
1

3
∫

x

ex/3

(u )
d

dx
ex/3

uex/3

u(x, y)

= x
1

3
ex/3

= ξ dξ+
1

3
∫

x

eξ/3 c2

= (x−3) +ex/3 c2

= x−3 + .c2e
−x/3 (1.3.8)

c2 = 2x+3yc1

u(x, y) = x−3 +G(2x+3y) .e−x/3

G

u(x, x) = x

u = x y = x

x = x−3 +G(5x) ,e−x/3

G(5x) = 3 .ex/3

z = 5x

G(z) = 3 .ez/15
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Figure : Integral surface found in Example 

The particular solution satisfying this side condition is

This surface is shown in Figure .

Figure : Integral surface with side condition and characteristics for Example .

In Figure  we superimpose the values of  along the characteristic curves. The characteristic curves are the red
lines and the images of these curves are the black lines. The side condition is indicated with the blue curve drawn along the
surface. 
The values of  are found from the side condition as follows. For  on the blue curve, we know that  and 

. Now, the characteristic lines are given by . The constant  is found on the blue curve from the
point of intersection with one of the black characteristic lines. For , we have . Then, the equation of the
characteristic line, which is red in Figure , is given by . 
Along these lines we need to find . First we have to find . We have on the blue curve, that

Therefore, . Inserting this result into the expression for the solution, we have

1.3.3 1.3.4

u(x, y) = x−3 +G(2x+3y)e−x/3

= x−3 +3e(2x+3y)/15e−x/3

= x−3 +3 .e(y−x)/5 (1.3.9)

1.3.4

1.3.4 1.3.4

1.3.4 u(x, y)

u(x, y) x = ξ y = ξ

u(ξ, ξ) = ξ 2x+3y = c1 c1

x = y = ξ = 5ξc1

1.3.4 y = (5ξ−2x)1
3

u(x, y) = x−3 +c2e
−x/3 c2

ξ = u(ξ, ξ)

= ξ−3 + .c2e
−ξ/3 (1.3.10)

= 3c2 eξ/3

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90244?pdf


1.3.6 https://math.libretexts.org/@go/page/90244

So, for each , one can draw a family of spacecurves

yielding the integral surface.

b.  on . 
For this condition, we have

We note that  is not a function in this expression. We only have one value for . So, we cannot solve for .
Geometrically, this side condition corresponds to one of the black curves in Figure .
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u(x, y) = x−3 + .e(ξ−x)/3

ξ

(x, (5ξ−2x), x−3 + )
1

3
e(ξ−x)/3

u(x, y) = 0 3y+2x = 1

0 = x−3 +G(1) .e−x/3

G G G(x)

1.3.4
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1.4: Applications

Conservation Laws

There are many applications of quasilinear equations, especially in fluid dynamics. The advection equation is one such example
and generalizations of this example to nonlinear equations leads to some interesting problems. These equations fall into a category
of equations called conservation laws. We will first discuss one-dimensional (in space) conservations laws and then look at simple
examples of nonlinear conservation laws.

Conservation laws are useful in modeling several systems. They can be boiled down to determining the rate of change of some
stuff, , in a region, , as depicted in Figure . The simples model is to think of fluid flowing in one dimension,
such as water flowing in a stream. Or, it could be the transport of mass, such as a pollutant. One could think of traffic flow down a
straight road.

Figure : The rate of change of  between  and  depends on the rates of flow through each end.

This is an example of a typical mixing problem. The rate of change of  is given as

Here the “Rate in” is how much is flowing into the region in Figure  from the  boundary. Similarly, the “Rate out” is
how much is flowing into the region from the  boundary. [Of course, this could be the other way, but we can imagine for now
that  is flowing from left to right.] We can describe this flow in terms of the flux,  over the ends of the region. On the left
side we have a gain of  and on the right side of the region there is a loss of .

The source term would be some other means of adding or removing  from the region. In terms of fluid flow, there could be a
source of fluid inside the region such as a faucet adding more water. Or, there could be a drain letting water escape. We can denote
this by the total source over the interval, . Here  is the source density.

In summary, the rate of change of  can be written as

We can write this in a slightly different form by noting that  can be viewed as the evaluation of antiderivatives in
the Fundamental Theorem of Calculus. Namely, we can recall that

The difference is not exactly in the order that we desire, but it is easy to see that

This is the integral form of the conservation law.

We can rewrite the conservation law in differential form. First, we introduce the density function, , so that the total amount
of stuff at a given time is

Introducing this form into the integral conservation law, we have

Q(t) a ≤ x ≤ b 1.4.1

1.4.1 Q x = a x = b

Q(t)

the rate of change of Q =  Rate in  −  Rate Out  +  source term.

1.4.1 x = a

x = b

q ϕ(x, t)
ϕ(a, t) ϕ(b, t)

Q

f(x, t) dx∫ b

a
f(x, t)

Q(x, t)

= ϕ(a, t) −ϕ(b, t) + f(x, y)dx.
dQ

dt
∫

b

a

ϕ(a, t) −ϕ(b, t)

dx = ϕ(b, t) −ϕ(a, t).∫
b

a

∂ϕ(x, t)

∂x

= − dx+ f(x, t)dx.
dQ

dt
∫

b

a

∂ϕ(x, t)

∂x
∫

b

a

(1.4.1)

u(x, t)

Q(t) = u(x, t)dx.∫
b

a
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Assuming that  and  are fixed in time and that the integrand is continuous, we can bring the time derivative inside the integrand
and collect the three terms into one to find

We cannot simply set the integrant to zero just because the integral vanishes. However, if this result holds for every region ,
then we can conclude the integrand vanishes. So, under that assumption, we have the local conservation law,

This partial differential equation is actually an equation in terms of two unknown functions, assuming we know something about
the source function. We would like to have a single unknown function. So, we need some additional information. This added
information comes from the constitutive relation, a function relating the flux to the density function. Namely, we will assume that
we can find the relationship . If so, then we can write

or .

Find the equation satisfied by  for  and .

Solution
For this flux function we have . The resulting equation is then . This is the inviscid
Burgers’ equation. We will later discuss Burgers’ equation.

This is a simple model of one-dimensional traffic flow. Let  be the density of cars. Assume that there is no source term.
For example, there is no way for a car to disappear from the flow by turning off the road or falling into a sinkhole. Also, there
is no source of additional cars.

Solution
Let  denote the number of cars per hour passing position  at time . Note that the units are given by cars/mi times
mi/hr. Thus, we can write the flux as , where  is the velocity of the carts at position  and time .

Figure : Car velocity as a function of car density.

We can now write the equation for the car density,

u(x, t)dx = − dx+ f(x, t)dx.
d

dt
∫

b

a

∫
b

a

∂ϕ

∂x
∫

b

a

(1.4.2)

a b

( (x, t) + (x, t) −f(x, t))dx = 0, ∀x ∈ [a, b].∫
b

a

ut ϕx

[a, b]

(x, t) + (x, t) = f(x, t).ut ϕx (1.4.3)

ϕ = ϕ(u)

=
∂ϕ

∂x

dϕ

du

∂u

∂x

= (u)ϕx ϕ′ ux

 Example : Inviscid Burgers' Equation1.4.1

u(x, t) ϕ(u) = 1
2
u2 f(x, t) ≡ 0

= (u) = uϕx ϕ′ ux ux +u = 0ut ux

 Example : Traffic Flow1.4.2

u(x, t)

ϕ(x, t) x t

ϕ = uv v x t

1.4.2
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Nonlinear Advection Equations
In this section we consider equations of the form . When  is a constant function, we have the advection
equation. In the last two examples we have seen cases in which  is not a constant function. We will apply the method of
characteristics to these equations. First, we will recall how the method works for the advection equation.

The advection equation is given by . The characteristic equations are given by

These are easily solved to give the result that

where  is an arbitrary constant.

The characteristic lines are shown in Figure . We note that . So, if we know  initially, we can
determine what  is at a later time.

Figure : The characteristics lines the -plane.

In Figure  we see that the value of  at  and  propagates along the characteristic to a point at time .
From , we can solve for  in terms of  and find that .

Plots of solutions  versus  for specific times give traveling waves as shown in Figure 1.3.1. In Figure  we show how
each wave profile for different times are constructed for a given initial condition.

Figure : For each  at , .

The nonlinear advection equation is given by , . Let  be the initial profile. The
characteristic equations are given by

These are solved to give the result that

0 = +ut ϕ′ux

= + (1 − ) .ut v1
2u

u1
ux (1.4.4)

+c(u) = 0ut ux c(u)
c(u)

+c = 0ut ux

= c, = 0.
dx

dt

du

dt

u(x, t) =  constant along the lines x = ct+ ,x0

x0

1.4.3 u(x, t) = u( , 0) = f( )x0 x0 u

u

1.4.3 xt

1.4.3 u( , )x0 t = 0 x = x0 t = t1

x−ct = x0 x t1 u( +c , ) = u( , 0)x0 t1 t1 x0

u(x, t) x 1.4.4

1.4.4 x = x0 t = 0 u( + ct, t) = u( , 0)x0 x0

+c(u) = 0ut ux |x| < ∞ u(x, 0) = (x)u0

= c(u), = 0.
dx

dt

du

dt
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along the characteristic curves . The lines passing though  have slope .

Solve , .

Solution
For this problem  along

Since  is constant, this equation can be integrated to yield . Inserting the initial condition, 
. Therefore, the solution is

In Figure  the characteristics a shown. In this case we see that the characteristics intersect. In Figure  we look more
specifically at the intersection of the characteristic lines for  and . These are approximately the first lines to
intersect; i.e., there are (almost) no intersections at earlier times. At the intersection point the function  appears to take
on more than one value. For the case shown, the solution wants to take the values  and .

Figure : The characteristics lines the -plane for the nonlinear advection equation.

Figure : The characteristics lines for  in the -plane for the nonlinear advection equation.

In Figure  we see the development of the solution. This is found using a parametric plot of the points 
for different times. The initial profile propagates to the right with the higher points traveling faster than the lower points since 

. Around  the wave breaks and becomes multivalued. The time at which the function becomes
multivalued is called the breaking time.

u(x, t) =  constant,

(t) = c(u)x′ u( , ) = ( )x0 u0 x0 1/c( ( ))u0 x0

 Example 1.4.3

+u = 0ut ux u(x, 0) = e−x2

u =  constant

= u.
dx

dt

u x = u( , 0)t+x0 x0

x = t+e−x2
0 x0

u(x, t) =  along x = t+ .e−x2
0 e−x2

0 x0

1.4.5 1.4.6
= 0x0 = 1x0

u(x, t)
u = 0 u = 1

1.4.5 xt

1.4.6 = 0, 1x0 xt

1.4.7 ( + t , )x0 e−x2
0 e−x2

0

(t) = u > 0x′ t = 1.0
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Figure : The development of a gradient catastrophe in Example  leading to a multivalued function.

Breaking Time

In the last example we saw that for nonlinear wave speeds a gradient catastrophe might occur. The first time at which a catastrophe
occurs is called the breaking time. We will determine the breaking time for the nonlinear advection equation, . For
the characteristic corresponding to , the wavespeed is given by

and the characteristic line is given by

The value of the wave function along this characteristic is

Therefore, the solution is

This means that

We can determine  and  using the characteristic line

Then, we have

1.4.7 1.4.3

+c(u) = 0ut ux
= ξx0

F (ξ) = c( (ξ))u0

x = ξ+ tF (ξ).

u(x, t) = u(ξ+ tF (ξ), t)

= . (1.4.5)

u(x, t) = (ξ) along x = ξ+ tF (ξ).u0

= (ξ) and = (ξ) .ux u′
0

ξx ut u′
0

ξt

ξx ξt

ξ = x− tF (ξ).
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Note that  and  are undefined if the denominator in both expressions vanishes, , or at time

The minimum time for this to happen in the breaking time,

Find the breaking time for , .

Solution
Since , we have

and

This goes

We need to find the minimum time. Thus, we set the derivative equal to zero and solve for .

Thus, the minimum occurs for , or . This gives

Shock Waves
Solutions of nonlinear advection equations can become multivalued due to a gradient catastrophe. Namely, the derivatives  and 

 become undefined. We would like to extend solutions past the catastrophe. However, this leads to the possibility of
discontinuous solutions. Such solutions which may not be differentiable or continuous in the domain are known as weak solutions.
In particular, consider the initial value problem

ξx

ξt

= 1 − t (ξ)F ′ ξx

= .
1

1 + t (ξ)F ′

= (x− tF (ξ))
∂

∂t
= −F (ξ) − t (ξ)F ′ ξt

= .
−F (ξ)

1 + t (ξ)F ′
(1.4.6)

ξx ξt 1 + t (ξ) = 0F ′

t = − .
1

(ξ)F ′

= min{− } .tb
1

(ξ)F ′
(1.4.7)

 Example 1.4.4

+u = 0ut ux u(x, 0) = e−x2

c(u) = u

F (ξ) = c( (ξ)) =u0 e−ξ2

(ξ) = −2ξ .F ′ e−ξ2

t = .
1

2ξe−ξ2

ξ

0 = ( )
d

dξ

eξ
2

2ξ

=(2 − ) .
1

ξ2

eξ
2

2
(1.4.8)

2 − = 01
ξ2 ξ = 1/ 2

–
√

= t( ) = = ≈ 1.16.tb
1

2
–

√

1
2

2√ e−1/2

e

2

−−
√ (1.4.9)

ut
ux

+ = 0, x ∈ R, t > 0, u(x, 0) = (x).ut ϕx u0
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Then,  is a weak solution of this problem if

for all smooth functions  with compact support, i.e.,  outside some compact subset of the domain.

Effectively, the weak solution that evolves will be a piecewise smooth function with a discontinuity, the shock wave, that
propagates with shock speed. It can be shown that the form of the shock will be the discontinuity shown in Figure  such that
the areas cut from the solutions will cancel leaving the total area under the solution constant. [See G. B. Whitham’s Linear and
Nonlinear Waves, 1973.] We will consider the discontinuity as shown in Figure .

Figure : The shock solution after the breaking time.

Figure : Depiction of the jump discontinuity at the shock position.

We can find the equation for the shock path by using the integral form of the conservation law,

Recall that one can differentiate under the integral if  and  are continuous in  and  in an appropriate subset of the
domain. In particular, we will integrate over the interval  as shown in Figure . The domains on either side of shock path
are denoted as  and  and the limits of  and  as one approaches from the left of the shock are denoted by 
and . Similarly, the limits of  and  as one approaches from the right of the shock are denoted by 
and .

u(x, t)

[u +ϕ ]dxdt+ (x)v(x, 0)dx = 0∫
∞

0
∫

∞

−∞
vt vx ∫

∞

−∞
u0

v∈ (R×[0, ∞))C∞ v≡= 0

1.4.8

1.4.9

1.4.8

1.4.9

u(x, t)dx = ϕ(a, t) −ϕ(b, t).
d

dt
∫

b

a

u(x, t) (x, t)ut x t

[a, b] 1.4.10
R+ R− x(t) u(x, t) (t)x−

s

= u( , t)u− x−
s x(t) u(x, t) (t)x+

s

= u( , t)u+ x+
s
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Figure : Domains on either side of shock path are denoted as  and .

We need to be careful in differentiating under the integral,

Taking the limits  and , we have that

Adopting the notation

we arrive at the Rankine-Hugonoit jump condition

This gives the equation for the shock path as will be shown in the next example.

Solution

1.4.10 R+ R−

u(x, t)dx
d

dt
∫

b

a

= [ u(x, t)dx+ u(x, t)dx]
d

dt
∫

(t)x−
s

a

∫
b

(t)x+
s

= (x, t)dx+ (x, t)dx∫
(t)x−

s

a

ut ∫
b

(t)x+
s

ut

+u( , t) −u( , t)x−
s

dx−
s

dt
x+
s

dx+
s

dt
= ϕ(a, t) −ϕ(b, t). (1.4.10)

a → x−
s b → x+

s

(u( , t) −u( , t)) = ϕ( , t) −ϕ( , t).x−
s x+

s

dxs

dt
x−
s x+

s

[f ] = f( ) −f( ),x+
s x−

s

= .
dxs

dt

[ϕ]

[u]
(1.4.11)

 Example 1.4.5
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Figure : Initial condition and characteristics for Example .

The characteristics for this partial differential equation are familiar by now. The initial condition and characteristics are shown
in Figure . From , there are two possibilities. If , then we have a constant. If  along the
characteristics, the we have straight lines of slope one. Therefore, the characteristics are given by

As seen in Figure  the characteristics intersect immediately at . The shock path is found from the Rankine-
Hugonoit jump condition. We first note that , since . Then, we have

Now we need only solve the ordinary differential equation  with initial condition . This gives .
This line separates the characteristics on the left and right side of the shock solution. The solution is given by

Figure : The characteristic lines end at the shock path (in red). On the left  and on the right .

In Figure  we show the characteristic lines ending at the shock path (in red) with  and on the right and  on the
left of the shock path. This is consistent with the solution. One just sees the initial step function moving to the right with speed 

 without changing shape

1.4.11 1.4.5

1.4.11 (t) = ux′ u = 0 u = 1

x(t) ={
,x0

t+ ,x0

x > 0,

x < 0.

1.4.11 t = 0

ϕ(u) = 1
2
u2 = uϕx ux

dxs

dt
=

[ϕ]

[u]

=
−1

2
u+2 1

2
u−2

−u+ u−

=
1

2

( + )( − )u+ u− u+ u−

−u+ u−

= ( + )
1

2
u+ u−

= (0 +1) = .
1

2

1

2
(1.4.12)

(t) =x′
s

1
2

(0) = 0xs (t) =xs
t

2

u(x, t) ={
1,

0,

x ≤ t/2,

x > t/2.

1.4.12 u = 1 u = 0

1.4.2 u = 0 u = 1

1/2
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Rarefaction Waves
Shocks are not the only type of solutions encountered when the velocity is a function of . There may sometimes be regions where
the characteristic lines do not appear. A simple example is the following.

Draw the characteristics for the problem , ,  satisfying the initial condition

Solution

Figure : Initial condition and characteristics for Example .

In this case the solution is zero for negative values of  and positive for positive values of  as shown in Figure . Since
the wavespeed is given by , the  initial values have the waves on the right moving to the right and the values on the left
stay fixed. This leads to the characteristics in Figure  showing a region in the -plane that has no characteristics. In this
section we will discover how to fill in the missing characteristics and, thus, the details about the solution between the 
and  values.

As motivation, we consider a smoothed out version of this problem.

Draw the characteristics for the initial condition

Solution

u

 Example 1.4.6

+u = 0ut ux |x| < ∞ t > 0

u(x, 0) ={
0,

1,

x ≤ 0,

x > 0.

1.4.13 1.4.9

x x 1.4.13
u u = 1

1.4.13 xt

u = 0
u = 1

 Example 1.4.7

u(x, 0) =

⎧

⎩
⎨
⎪

⎪

0,

,x+ϵ

2ϵ

1,

x ≤ −ϵ,

|x| ≤ ϵ,

x > ϵ.
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Figure : The function and characteristics for the smoothed step function. Characteristics for rarefaction, or expansion,
waves are fan-like characteristics.

The function is shown in the top graph in Figure . The leftmost and rightmost characteristics are the same as the
previous example. The only new part is determining the equations of the characteristics for . These are found using the
method of characteristics as

These characteristics are drawn in Figure  in red. Note that these lines take on slopes varying from infinite slope to slope
one, corresponding to speeds going from zero to one.

Comparing the last two examples, we see that as  approaches zero, the last example converges to the previous example. The
characteristics in the region where there were none become a “fan”. We can see this as follows. Since  for the fan region, as 
 gets small, so does this interval. Let’s scale  as , . Then,

For each  there is a characteristic. Letting , we have

Thus, we have a family of straight characteristic lines in the -plane passing through  of the form  for  varying from 
 to . These are shown as the red lines in Figure .

Figure : The characteristics for Example  showing the “fan” characteristics.

The fan characteristics can be written as  constant. So, we can seek to determine these characteristics analytically and in a
straight forward manner by seeking solutions of the form .

Determine solutions of the form  to . Inserting this guess into the differential equation, we have

1.4.14

1.4.14
|x| ≤ ϵ

x = ξ+ (ξ)t, (ξ) = t.u0 u0
ξ+ ϵ

2ϵ

1.4.14

ϵ

|ξ| < ϵ

ϵ ξ ξ = σϵ σ ∈ [−1, 1]

x = σϵ+ (σϵ)t, (σϵ) = t = (σ+1)t.u0 u0
σϵ+ ϵ

2ϵ

1

2

σ ∈ [−1, 1] ϵ → 0

x = ct, c = (σ+1)t.
1

2

xt (0, 0) x = ct c

c = 0 c = 1 1.4.15

1.4.15 1.4.9

x/t =
u(x, t) = g( )x

t

 Example 1.4.8

u(x, t) = g( )x
t

+u = 0ut ux
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Solution
Thus, either  or . The first case will not work since this gives constant solutions. The second solution is exactly
what we had obtained before. Recall that solutions along characteristics give . The characteristics and
solutions for  are shown in Figure . At a specific time one can draw a line (dashed lines in figure) and follow
the characteristics back to the  values,  in order to construct .

Figure : The characteristics and solutions for  for Example 

As a last example, let’s investigate a nonlinear model which possesses both shock and rarefaction waves.

Solve the initial value problem , ,  satisfying the initial condition

Solution
The method of characteristics gives

Therefore,

0 = +uut ux

= (g− ) .
1

t
g′ x

t
(1.4.13)

= 0g′ g = x
t

u(x, t) = =  constantx
t

t = 0, 1, 2 1.4.16
t = 0 u(ξ, 0) u(x, t)

1.4.16 t = 0, 1, 2 1.4.9

 Example 1.4.9

+ = 0ut u2ux |x| < ∞ t > 0

u(x, 0) =
⎧

⎩
⎨
⎪

⎪

0,

1,

0,

x ≤ 0,

0 < x < 2,

x ≥ 2.

= , = 0.
dx

dt
u2 du

dt

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90911?pdf


1.4.13 https://math.libretexts.org/@go/page/90911

There are three values of ,

In Figure  we see that there is a rarefaction and a gradient catastrophe.

Figure : In this example there occurs a rarefaction and a gradient catastrophe.

Therefore, along the fan characteristics the solutions are  These fan characteristics are added in

Figure .

Next, we turn to the shock path. We see that the first intersection occurs at the point . The Rankine-Hugonoit
condition gives

Figure : The fan characteristics are added to the other characteristic lines.

Thus, the shock path is given by  with initial condition . This gives . In Figure  the
shock path is shown in red with the fan characteristics and vertical lines meeting the path. Note that the fan lines and vertical
lines cross the shock path. This leads to a change in the shock path.

u(x, t) = (ξ) =  const. along the lines x(t) = (ξ)t+ξ.u0 u2
0

(ξ)u0

(ξ) =u0

⎧

⎩
⎨
⎪

⎪

0,

1,

0,

ξ ≤ 0,

0 < ξ < 2,

ξ ≥ 2.

1.4.17

1.4.17

u(x, t) = =  constant.x
t

−−
√

1.4.18

(x, t) = (2, 0)

dxs

dt
=

[ϕ]

[u]

=
−1

2
u+3 1

3
u−3

−u+ u−

=
1

3

( − )( + + )u+ u− u+2
u+u− u−2

−u+ u−

= ( + +
1

3
u+2

u+u− u−2

= (0 +0 +1) = .
1

3

1

3
(1.4.14)

1.4.18

(t) =x′
s

1
3

(0) = 2xs (t) = +2xs
t
3

1.4.19
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Figure : The shock path is shown in red with the fan characteristics and vertical lines meeting the path.

The new path is found using the Rankine-Hugonoit condition with  and . Thus,

We need to solve the initial value problem

This can be done using separation of variables. Namely,

This gives the solution

Since the second shock solution starts at the point , we can determine . This gives the shock path as

In Figure  we show this shock path and the other characteristics ending on the path.

1.4.19

= 0u+ =u− x
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√

dxs
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=
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=
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3
u+3 1

3
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−u+ u−
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3

( − )( + + )u+ u− u+2
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∫ = .
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Figure : The second shock path is shown in red with the characteristics shown in all regions.

It is interesting to construct the solution at different times based on the characteristics. For a given time, , one draws a
horizontal line in the -plane and reads off the values of  using the values at  and the rarefaction solutions. This is
shown in Figure . The right discontinuity in the initial profile continues as a shock front until . At that time the
back rarefaction wave has caught up to the shock. After , the shock propagates forward slightly slower and the height of
the shock begins to decrease. Due to the fact that the partial differential equation is a conservation law, the area under the shock
remains constant as it stretches and decays in amplitude.

1.4.20

t

xt u(x, t) t = 0
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Figure : Solutions for the shock rarefaction example.

Traffic Flow
An interesting application is that of traffic flow. We had already derived the flux function. Let’s investigate examples with varying
initial conditions that lead to shock or rarefaction waves. As we had seen earlier in modeling traffic flow, we can consider the flux
function

which leads to the conservation law

Here  represents the density of the traffic and  is the maximum density and  is the initial velocity.

1.4.21

ϕ = uv= (u− ) ,v1
u2

u1

+ (1 − ) = 0.ut v1
2u

u1
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u(x, t) u1 v1
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Figure : Cars approaching a red light.

The characteristics for this problem are given by

where

Since the initial condition is a piecewise-defined function, we need to consider two cases.

First, for , we have

Therefore, the slopes of the characteristics,  are .

For , we have

So, the characteristics are .

Figure : Initial condition and characteristics for the red light problem.

In Figure  we plot the initial condition and the characteristics for  and . We see that there are crossing
characteristics and the begin crossing at . Therefore, the breaking time is . We need to find the shock path satisfying 

. The Rankine-Hugonoit conditions give

1.4.22

x = c(u( , t))t+ ,x0 x0

x(u( , t)) = (1 − ).x0 v1
2u( , 0)x0

u1

x ≥ 0

c(u( , t)) = c( ) = (1 − ) = − .x0 u1 v1
2u1

u1
v1

x = − t+v1 x0 −1/v1

< 0x0

c(u( , t)) = c( ) = (1 − ).x0 u0 v1
2u0

u1

x = − (1 − )t+v1
2u0

u1
x0
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Thus, the shock path is found as .

In Figure  we show the shock path. In the top figure the red line shows the path. In the lower figure the characteristics are
stopped on the shock path to give the complete picture of the characteristics. The picture was drawn with  and 

.

Figure : The addition of the shock path for the red light problem.

The next problem to consider is stopped traffic as the light turns green. The cars in Figure  begin to fan out when the traffic
light turns green. In this model the initial condition is given by

Figure : Cars begin to fan out when the traffic light turns green.

Again,

Inserting the initial values of  into this expression, we obtain constant speeds, . The resulting characteristics are given by

dxs

dt
=

[ϕ]

[u]

=
−1

2
u+2 1

2
u−2

−u+ u−

=
1

2

0 −v1
u2

0

u1

−u1 u0

= − .v1
u0

u1
(1.4.16)
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Figure : The characteristics for the green light problem.
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1.5: General First Order PDEs
We have spent time solving quasilinear first order partial differential equations. We now turn to nonlinear first order equations of
the form

for .

If we introduce new variables,  and , then the differential equation takes the form

Note that for  a function with continuous derivatives, we have

We can view  as a surface in a five dimensional space. Since the arguments are functions of  and , we have from the
multivariable Chain Rule that

Similarly, from  we have that

Combining these results we have the Charpit Equations

These equations can be used to find solutions of nonlinear first order partial differential equations as seen in the following
examples.

The Charpit equations were named after the French mathematician Paul Charpit Villecourt, who was probably the first to
present the method in his thesis the year of his death, 1784. His work was further extended in 1797 by Lagrange and given a
geometric explanation by Gaspard Monge (1746-1818) in 1808. This method is often called the Lagrange-Charpit method.

Find the general solution of .

Solution
First, we introduce  and . Then,

Next we identify,

Then,

F (x, y, u, , ) = 0,ux uy

u = u(x, y)

p = ux q = uy

F (x, y, u, p, q) = 0.

u(x, t)

= = = .py uxy uyx qx

F = 0 x y

dF

dx

0

= + + +Fx Fu

∂u

∂x
Fp

∂p

∂x
Fq

∂q

∂x
= +p + + .Fx Fu pxFp pyFq (1.5.1)

= 0dF

dy

= = − .
dx

Fp

dy

Fq

dq

+qFy Fu

= = = − = − .
dx

Fp

dy

Fq

du

p +qFp Fq

dp

+pFx Fu

dq

+qFy Fu

(1.5.2)

 The Charpit equations

 Example 1.5.1

+y −u = 0u2
x uy

= pux = quy

F (x, y, u, p, q) = +qy−u = 0.p
2

= 2p, = y, = −1, = 0, = q.Fp Fq Fu Fx Fy
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The Charpit equations are then

The first conclusion is that  constant. So, from the partial differential equation we have .

Since , then

Therefore,

Solving for , we have

This example required a few tricks to implement the solution. Sometimes one needs to find parametric solutions. Also, if an
initial condition is given, one needs to find the particular solution. In the next example we show how parametric solutions are
found to the initial value problem.

Solve the initial value problem , .

Solution
We consider the parametric form of the Charpit equations,

This leads to the system of equations

The second, fourth, and fifth equations can be solved to obtain

p +qFp Fq

+pFx Fu

+qFy Fu

= 2 +qy,p2

= −p,
= q−q = 0.

= = = = .
dx

2p

dy

y

du

2 +qyp2

dp

p

dq

0

q = =c1 u = + yp2 c1

du = pdx+qdy = pdx+ dyc1

du−cdy = dx.u− yc1
− −−−−−

√

∫
d(u− y)c1

u− yc1
− −−−−−

√

∫
z

z√
2 u− yc1

− −−−−−√

= ∫ dx

= x+c2

= x+ .c2 (1.5.3)

u

u(x, y) = (x+ + y.
1

4
c2)2 c1

 Example 1.5.2

+ +u = 0u2
x uy u(x, 0) = x

dt = = = = − = − .
dx

Fp

dy

Fq

du

p +qFp Fq

dp

+pFx Fu

dq

+qFy Fu

(1.5.4)

dx

dt
dy

dt
du

dt
dp

dt
dq

dt

= = 2p.Fp

= = 1.Fq

= p +q = 2 +q.Fp Fq p
2

= −( +p ) = −p.Fx Fu

= −( +q ) = −q.Fy Fu
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Inserting these results into the remaining equations, we have

These equations can be integrated to find Inserting these results into the remaining equations, we have

This is a parametric set of equations for . Since

we have

We can use the initial conditions by first parametrizing the conditions. Let  and , Then, .
Since , , or .

From the partial differential equation, we have . Therefore,

These relations imply that

So,

The conditions on  and  give
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y

p

q

= t+ .c1

= .c2e
−t

= .c3e
−t

dx

dt

= 2 + .
du

dt
c2

2e
−2t c3e

−t

= 2 .c2e
−t

x

u

= −2 + .c2e
−t c4

= − − + .c2
2e

−2t
c3e
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−t x−c4
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2e
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1.6: Modern Nonlinear PDEs
The study of nonlinear partial differential equations is a hot research topic. We will (eventually) describe some examples of
important evolution equations and discuss their solutions in the last chapter.
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1.8: Problems

Write the following equations in conservation law form,  by finding the flux function .

a. 
b. 
c. 
d. 

Consider the Klein-Gordon equation,  for  and  constants. Find traveling wave solutions 
.

Find the general solution  to the following problems.

a. 
b. 
c. 
d. 

Solve the following problems.

a. 
b. 
c. 
d. 
e. 
f. 
g. 
h. 

Consider the problem  satisfying the initial condition .

a. Find and plot the characteristics.
b. Graphically locate where a gradient catastrophe might occur. Estimate from your plot the breaking time.
c. Analytically determine the breaking time.
d. Plot solutions  at times before and after the breaking time.

Consider the problem  satisfying the initial condition .

a. Find and plot the characteristics.
b. Graphically locate where a gradient catastrophe might occur. Estimate from your plot the breaking time.
c. Analytically determine the breaking time.

 Exercise 1.8.1

ut + = 0φx φ(u)

+c = 0.ut ux

+u −μ = 0.ut ux uxx

+6u + = 0.ut ux uxxx

+ + = 0.ut u2ux uxxx

 Exercise 1.8.2

−a = buutt uxx a b

u(x, t) = f(x −ct)

 Exercise 1.8.3

u(x, y)

= 0.ux

y −x = 0.ux uy

2 +3 = 1.ux uy

+ = u.ux uy

 Exercise 1.8.4

+2 = 0, u(x, 0) = sinx.ux uy

+4 = 0, u(x, 0) = .ut ux
1

1+x2

y −x = 0, u(x, 0) = x.ux uy

+xt = 0, u(x, 0) = sinx.ut ux

y +x = 0, u(0, y) = .ux uy e−y2

x −2xt = 2tu, u(x, 0) = .ut ux x2

(y −u) +(u −x) = x −y, u = 0 on xy = 1.ux uy

y +x = xy, x, y > 0,  for u(x, 0) = , x > 0 and u(0, y) = , y > 0.ux uy e−x2
e−y2

 Exercise 1.8.5

+u = 0, |x| < ∞, t > 0ut ux u(x, 0) = 1
1+x2

u(x, t)

 Exercise 1.8.6

+ = 0, |x| < ∞, t > 0ut u2ux u(x, 0) = 1
1+x2
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d. Plot solutions  at times before and after the breaking time.

a. Find and plot the characteristics.
b. Graphically locate where a gradient catastrophe might occur. Estimate from your plot the breaking time.
c. Analytically determine the breaking time.
d. Find the shock wave solution.

Consider the problem  satisfying the initial condition

a. Find and plot the characteristics.
b. Graphically locate where a gradient catastrophe might occur. Estimate from your plot the breaking time.
c. Analytically determine the breaking time.
d. Find the shock wave solution.

Consider the problem  satisfying the initial condition

a. Find and plot the characteristics.
b. Graphically locate where a gradient catastrophe might occur. Estimate from your plot the breaking time.
c. Analytically determine the breaking time.
d. Find the shock wave solution.

Solve the problem  satisfying the initial condition

Solve the problem  satisfying the initial condition

Consider the problem  satisfying the initial condition

u(x, t)

 Exercise 1.8.7

 Exercise 1.8.8

+u = 0, |x| < ∞, t > 0ut ux

u(x, 0) = {
1,

2,

x ≤ 0,

x > 0.

 Exercise 1.8.9

+u = 0, |x| < ∞, t > 0ut ux

u(x, 0) =

⎧

⎩
⎨
⎪

⎪

0,

2,

1,

x ≤ −1,

|x| < 1,

x > 1.

 Exercise 1.8.10

+u = 0, |x| < ∞, t > 0ut ux

u(x, 0) =

⎧

⎩
⎨
⎪

⎪

1,

1 − ,x
a

0,

x ≤ 0,

0 < x < a,

x ≥ a.

 Exercise 1.8.11

+u = 0, |x| < ∞, t > 0ut ux

u(x, 0) =

⎧

⎩
⎨
⎪

⎪

0,

,x
a

1,

x ≤ 0,

0 < x < a,

x ≥ a.

 Exercise 1.8.12

+ = 0, |x| < ∞, t > 0ut u2ux
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a. Find and plot the characteristics.
b. Graphically locate where a gradient catastrophe might occur. Estimate from your plot the breaking time.
c. Analytically determine the breaking time.
d. Find the shock wave solution.

Consider the problem  satisfying the initial condition

a. Find and plot the characteristics.
b. Find and plot the fan characteristics.
c. Write out the rarefaction wave solution for all regions of the -plane.

Solve the initial-value problem  satisfying

Consider the stopped traffic problem in a situation where the maximum car density is  cars per mile and the maximum
speed is  miles per hour. Assume that the cars are arriving at  miles per hour. Find the solution of this problem and
determine the rate at which the traffic is backing up. How does the answer change if the cars were arriving at  miles per
hour.

Solve the following nonlinear equations where  and .

a. 
b. 
c. 
d. 
e. 

Find the solution of  in parametric form for the initial conditions at :
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u(x, 0) = {
2,

1,

x ≤ 0,

x > 0.

 Exercise 1.8.13

+ = 0, |x| < ∞, t > 0ut u2ux

u(x, 0) = {
1,

2,

x ≤ 0,

x > 0.

xt

 Exercise 1.8.14

+u = 0, |x| < ∞, t > 0ut ux

u(x, 0) =

⎧

⎩
⎨
⎪

⎪

1,

1 −x,

0,

x ≤ 0,

0 ≤ x ≤ 1,

x ≥ 1.

 Exercise 1.8.15

200

50 30

15

 Exercise 1.8.16

p = ux q = uy

+ = 1, u(x, x) = x.p2 q2

pq = u, u(0, y) = .y2

p +q = pq, u(x, 0) = x.

pq = .u2

+qy = u.p2

 Exercise 1.8.17

xp +qy − q −u = 0p2 t = 0

x(t, s) = s, y(t, s) = 2, u(t, s) = s +1
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CHAPTER OVERVIEW

2: Second Order Partial Differential Equations

"Either mathematics is too big for the human mind or the human mind is more than a
machine." - Kurt Gödel (1906-1978)

2.1: Introduction
2.2: Derivation of Generic 1D Equations
2.3: Boundary Value Problems
2.4: Separation of Variables
2.5: Laplace’s Equation in 2D
2.6: Classification of Second Order PDEs
2.7: d’Alembert’s Solution of the Wave Equation
2.8: Problems

Thumbnail: Visualization of heat transfer in a pump casing, created by solving the heat equation. Heat is being generated internally
in the casing and being cooled at the boundary, providing a steady state temperature distribution. (CC BY-SA 3.0; via Wikipedia)
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2.1: Introduction
In this chapter we will introduce several generic second order linear partial differential equations and see how such equations lead
naturally to the study of boundary value problems for ordinary differential equations. These generic differential equation occur in
one to three spatial dimensions and are all linear differential equations. A list is provided in Table . Here we have introduced
the Laplacian operator, . Depending on the types of boundary conditions imposed and on the geometry of
the system (rectangular, cylindrical, spherical, etc.), one encounters many interesting boundary value problems.

Table : List of generic partial differential equations.
Name 2 Vars 3D

Heat Equation

Wave Equation

Laplace's Equation

Poisson's Equation

Schrödinger’s Equation

Let’s look at the heat equation in one dimension. This could describe the heat conduction in a thin insulated rod of length . It
could also describe the diffusion of pollutant in a long narrow stream, or the flow of traffic down a road. In problems involving
diffusion processes, one instead calls this equation the diffusion equation. [See the derivation in Section 2.2.2.]

A typical initial-boundary value problem for the heat equation would be that initially one has a temperature distribution 
. Placing the bar in an ice bath and assuming the heat flow is only through the ends of the bar, one has the boundary

conditions  and . Of course, we are dealing with Celsius temperatures and we assume there is plenty of ice
to keep that temperature fixed at each end for all time as seen in Figure . So, the problem one would need to solve is given as
[IC = initial condition(s) and BC = boundary conditions.]

Figure : One dimensional heated rod of length .

Here,  is the heat conduction constant and is determined using properties of the bar.

Another problem that will come up in later discussions is that of the vibrating string. A string of length  is stretched out
horizontally with both ends fixed such as a violin string as shown in Figure . Let  be the vertical displacement of the
string at position  and time . The motion of the string is governed by the one dimensional wave equation. [See the derivation in
Section 2.2.1.] The string might be plucked, giving the string an initial profile, , and possibly each point on the
string has an initial velocity . The initial-boundary value problem for this problem is given below.

2.1.1
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In this problem  is the wave speed in the string. It depends on the mass per unit length of the string, , and the tension, ,
placed on the string.

Figure : One dimensional string of length .

There is a rich history on the study of these and other partial differential equations and much of this involves trying to solve
problems in physics. Consider the one dimensional wave motion in the string. Physically, the speed of these waves depends on the
tension in the string and its mass density. The frequencies we hear are then related to the string shape, or the allowed wavelengths
across the string. We will be interested the harmonics, or pure sinusoidal waves, of the vibrating string and how a general wave on
the string can be represented as a sum over such harmonics. This will take us into the field of spectral, or Fourier, analysis. The
solution of the heat equation also involves the use of Fourier analysis. However, in this case there are no oscillations in time.

There are many applications that are studied using spectral analysis. At the root of these studies is the belief that continuous
waveforms are comprised of a number of harmonics. Such ideas stretch back to the Pythagoreans study of the vibrations of strings,
which led to their program of a world of harmony. This idea was carried further by Johannes Kepler (1571-1630) in his harmony of
the spheres approach to planetary orbits. In the 1700’s others worked on the superposition theory for vibrating waves on a stretched
spring, starting with the wave equation and leading to the superposition of right and left traveling waves. This work was carried out
by people such as John Wallis (1616-1703), Brook Taylor (1685-1731) and Jean le Rond d’Alembert (1717-1783).

Figure : Plot of the second harmonic of a vibrating string at different times.
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In 1742 d’Alembert solved the wave equation

where  is the string height and  is the wave speed. However, this solution led him and others, like Leonhard Euler (1707-1783)
and Daniel Bernoulli (1700-1782), to investigate what "functions" could be the solutions of this equation. In fact, this led to a more
rigorous approach to the study of analysis by first coming to grips with the concept of a function. For example, in 1749 Euler
sought the solution for a plucked string in which case the initial condition  has a discontinuous derivative! (We will
see how this led to important questions in analysis.)

In 1753 Daniel Bernoulli viewed the solutions as a superposition of simple vibrations, or harmonics. Such superpositions amounted
to looking at solutions of the form

where the string extends over the interval  with fixed ends at  and .

However, the initial profile for such superpositions is given by

It was determined that many functions could not be represented by a finite number of harmonics, even for the simply plucked string
in Figure  given by an initial condition of the form

Thus, the solution consists generally of an infinite series of trigonometric functions.

Figure : Plot of an initial condition for a plucked string.
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The one dimensional version of the heat equation is a partial differential equation for  of the form

Solutions satisfying boundary conditions  and , are of the form

In this case, setting , one has to satisfy the condition

This is another example leading to an infinite series of trigonometric functions.

Such series expansions were also of importance in Joseph Fourier’s (1768- 1830) solution of the heat equation. The use of Fourier
expansions has become an important tool in the solution of linear partial differential equations, such as the wave equation and the
heat equation. More generally, using a technique called the Method of Separation of Variables, allowed higher dimensional
problems to be reduced to one dimensional boundary value problems. However, these studies led to very important questions,
which in turn opened the doors to whole fields of analysis. Some of the problems raised were

1. What functions can be represented as the sum of trigonometric functions?
2. How can a function with discontinuous derivatives be represented by a sum of smooth functions, such as the above sums of

trigonometric functions?
3. Do such infinite sums of trigonometric functions actually converge to the functions they represent?

There are many other systems for which it makes sense to interpret the solutions as sums of sinusoids of particular frequencies. For
example, we can consider ocean waves. Ocean waves are affected by the gravitational pull of the moon and the sun and other
numerous forces. These lead to the tides, which in turn have their own periods of motion. In an analysis of wave heights, one can
separate out the tidal components by making use of Fourier analysis.

In the Section 2.4 we describe how to go about solving these equations using the method of separation of variables. We will find
that in order to accommodate the initial conditions, we will need to introduce Fourier series before we can complete the problems,
which will be the subject of the following chapter. However, we first derive the one-dimensional wave and heat equations.

This page titled 2.1: Introduction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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2.2: Derivation of Generic 1D Equations

Derivation of Wave Equation for String

The wave equation for a one dimensional string is derived based upon simply looking at Newton’s Second Law of Motion for a
piece of the string plus a few simple assumptions, such as small amplitude oscillations and constant density.

We begin with . The mass of a piece of string of length  is . From Figure  an incremental length f the
string is given by

The piece of string undergoes an acceleration of .

We will assume that the main force acting on the string is that of tension. Let  be the magnitude of the tension acting on the
left end of the piece of string. Then, on the right end the tension is . At these points the tension makes an angle to the
horizontal of  and , respectively.

Assuming that there is no horizontal acceleration, the -component in the second law, , for the string element is given by

Figure : A small piece of string is under tension.

The vertical component is given by

The length of the piece of string can be written in terms of ,

and the right hand sides of the component equation can be expanded about , to obtain

Furthermore, we note that

F = ma ds m = ρ(x)ds 2.2.1

Δ = Δ +Δ .s2 x2 u2

a = u∂ 2

∂t2
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2.2.1
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Now we can divide these component equations by  and let . This gives the approximations

We will assume a small angle approximation, giving

, and

Then, the horizontal component becomes

Therefore, the magnitude of the tension  is at most time dependent.

The vertical component equation is now

Assuming that  and  are constant and defining

we obtain the one dimensional wave equation,

Derivation of 1D Heat Equation

Consider a one dimensional rod of length  as shown in Figure . It is heated and allowed to sit. The heat equation is the
governing equation which allows us to determine the temperature of the rod at a later time.

Figure : One dimensional heated rod of length .
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We begin with some simple thermodynamics. Recall that to raise the temperature of a mass  by  takes thermal energy given
by

assuming the mass does not go through a phase transition. Here  is the specific heat capacity of the substance. So, we will begin
with the heat content of the rod as

and assume that  and  are constant.

We will also need Fourier’s law of heat transfer or heat conduction. This law simply states that heat energy flows from warmer to
cooler regions and is written in terms of the heat energy flux, . The heat energy flux, or flux density, gives the rate of energy
flow per area. Thus, the amount of heat energy flowing over the left end of the region of cross section  in time  is given 

. The units of  are then .

Fourier’s law of heat conduction states that the flux density is proportional to the gradient of the temperature,

Here  is the thermal conductivity and the negative sign takes into account the direction of flow from higher to lower
temperatures.

Figure : A one dimensional rod of length . Heat can flow through increment .

Now we make use of the conservation of energy. Consider a small section of the rod of width  as shown in Figure . The
rate of change of the energy through this section is due to energy flow through the ends. Namely

The energy content of the small segment of the rod is given by

The flow rates across the boundaries are given by the flux.

Dividing by  and  and letting , , we obtain

Using Fourier’s law of heat conduction,

Assuming , , and  are constant, we have the one dimensional heat equation as used in the text:
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where .
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2.3: Boundary Value Problems
You might have only solved initial value problems in your undergraduate differential equations class. For an initial value problem
one has to solve a differential equation subject to conditions on the unknown function and its derivatives at one value of the
independent variable. For example, for  we could have the initial value problem

Typically, initial value problems involve time dependent functions and boundary value problems are spatial. So, with an initial
value problem one knows how a system evolves in terms of the differential equation and the state of the system at some fixed time.
Then one seeks to determine the state of the system at a later time.

Solve the initial value problem, .

Solution
Note that the conditions are provided at one time, . Thus, this an initial value problem. Recall from your course on
differential equations that we need to find the general solution and then apply the initial conditions. Furthermore, this is a
nonhomogeneous differential equation, so the solution is a sum of a solution of the homogeneous equation and a particular
solution of the nonhomogeneous equation, . [See the ordinary differential equations review in the
Appendix.]

The solution of  is easily found as

The particular solution is found using the Method of Undetermined Coefficients. We guess a solution of the form

Differentiating twice, we have

So,

Comparing the right hand side of this equation with  in the original problem, we are led to setting  and .
Thus, the general solution is

We now apply the initial conditions to find the particular solution. The first condition, , gives

Thus, . Using this value for , the second condition, , gives . Therefore,

For boundary values problems, one knows how each point responds to its neighbors, but there are conditions that have to be
satisfied at the endpoints. An example would be a horizontal beam supported at the ends, like a bridge. The shape of the beam
under the influence of gravity, or other forces, would lead to a differential equation and the boundary conditions at the beam ends
would affect the solution of the problem. There are also a variety of other types of boundary conditions. In the case of a beam, one
end could be fixed and the other end could be free to move. We will explore the effects of different boundary conditions in our

x = x(t)

+x = 2, x(0) = 1, (0) = 0.x′′ x′ (2.3.1)
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discussions and exercises. But, we will first solve a simple boundary value problem which is a slight modification of the above
problem.

Solve the boundary value problem, .

Solution
Note that the conditions at  and  make this a boundary value problem since the conditions are given at two different
points. As with initial value problems, we need to find the general solution and then apply any conditions that we may have.
This is a nonhomogeneous differential equation, so the solution is a sum of a solution of the homogeneous equation and a
particular solution of the nonhomogeneous equation, . The solution of  is easily found as

The particular solution is found using the Method of Undetermined Coefficients,

Thus, the general solution is

We now apply the boundary conditions and see if there are values of  and  that yield a solution to this boundary value
problem. The first condition, , gives

Thus, . Using this value for , the second condition, , gives

This yields

We have found that there is a solution to the boundary value problem and it is given by

Boundary value problems arise in many physical systems, just as the initial value problems we have seen earlier. We will see in the
next sections that boundary value problems for ordinary differential equations often appear in the solutions of partial differential
equations. However, there is no guarantee that we will have unique solutions of our boundary value problems as we had found in
the example above.

Now that we understand simple boundary value problems for ordinary differential equations, we can turn to initial-boundary value
problems for partial differential equations. We will see that a common method for studying these problems is to use the method of
separation of variables. In this method the problem of solving partial differential equations is to separate the partial differential
equation into several ordinary differential equations of which several are boundary value problems of the sort seen in this section.

This page titled 2.3: Boundary Value Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

 Example : Boundary Value Problem2.3.2

+x = 2, x(0) = 1, x(1) = 0x′′

t = 0 t = 1

x(t) = (t) + (t)xh xp +x = 0x′′

(t) = cos t + sin t.xh c1 c2

(t) = 2.xp

x(t) = 2 + cos t + sin t.c1 c2

c1 c2

x(0) = 0

0 = 2 + .c1

= −2c1 c1 x(1) = 1

0 = 2 −2 cos 1 + sin1.c2

= .c2
2(cos 1 −1)

sin1

x(t) = 2(1 −cos t sin t) .
(cos 1 −1)

sin1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90248?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/02%3A_Second_Order_Partial_Differential_Equations/2.03%3A_Boundary_Value_Problems
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
https://people.uncw.edu/hermanr/pde1/PDEbook


2.4.1 https://math.libretexts.org/@go/page/90249

2.4: Separation of Variables
Solving many of the linear partial differential equations presented in the first section can be reduced to solving ordinary differential
equations. We will demonstrate this by solving the initial-boundary value problem for the heat equation as given in (2.1.1). We will
employ a method typically used in studying linear partial differential equations, called the Method of Separation of Variables. In
the next subsections we describe how this method works for the one-dimensional heat equation, one-dimensional wave equation,
and the two-dimensional Laplace equation.

Heat Equation
We want to solve the heat equation,

subject to the boundary conditions

and the initial condition

We begin by assuming that  can be written as a product of single variable functions of each independent variable,

Substituting this guess into the heat equation, we find that

The prime denotes differentiation with respect to the independent variable and we will suppress the independent variable in the
following unless needed for emphasis.

Dividing both sides of this result by  and , yields

We have separated the functions of time on one side and space on the other side. The constant  could be on either side of this
expression, but we moved it to make later computations simpler.

The only way that a function of  equals a function of  is if the functions are constant functions. Therefore, we set each function
equal to a constant,  : [For example, if  is possible for any  or , then this is only possible if ,  and 

.]

This leads to two equations:

These are ordinary differential equations. The general solutions to these constant coefficient equations are readily found as

We need to be a little careful at this point. The aim is to force the final solutions to satisfy both the boundary conditions and initial
conditions. Also, we should note that  is arbitrary and may be positive, zero, or negative. We first look at how the boundary
conditions on  lead to conditions on .

= k , 0 < t, 0 ≤ x ≤ L.ut uxx

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f(x), 0 < x < L.

u

u(x, t) = X(x)T (t).

X = k T .T ′ X ′′

k u = XT

= .
1

k

T ′

T

X ′′

X

k

t x

λ A = a +bect x2 x t a = 0 c = 0
b = A

= =
1

k

T ′

T
  

function of t

X ′′

X
 

function of x

λ.
 

constant

= kλT ,T ′ (2.4.1)

= λX.X ′′ (2.4.2)

T (t) = A ,ekλt (2.4.3)

X(x) = + .c1e
xλ√ c2e

− xλ√ (2.4.4)

λ

u(x, t) X(x)
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The first boundary condition is . This implies that

The only way that this is true is if . Similarly,  for all  implies that . So, we have to solve the
boundary value problem

An obvious solution is . However, this implies that , which is not an interesting solution. We call such solutions, 
, trivial solutions and will seek nontrivial solution for these problems.

There are three cases to consider, depending on the sign of .

In this case we have the exponential solutions

For , we have

We will take . Then,

Applying the second condition,  yields

This will be true only if , since . Thus, the only solution in this case is the trivial solution, .

For this case it is easier to set  to zero in the differential equation. So, . Integrating twice, one finds

Setting , we have , leaving . Setting , we find . So,  and we are once again left with
a trivial solution.

III. 

In this case is would be simpler to write . Then the differential equation is

The general solution is

At  we get . This leaves . At , we find

So, either  or .  leads to a trivial solution again. But, there are cases when the sine is zero. Namely,

Note that  is not included since this leads to a trivial solution. Also, negative values of  are redundant, since the sine
function is an odd function.

In summary, we can find solutions to the boundary value problem  for particular values of . The solutions are

u(0, t) = 0

X(0)T (t) = 0, for all t.

X(0) = 0 u(L, t) = 0 t X(L) = 0

−λX = 0, X(0) = 0 = X(L).X ′′ (2.4.5)

X ≡ 0 u(x, t) = 0
X ≡ 0

λ

λ>0

X(x) = +c1e
xλ√ c2e

− x.λ√ (2.4.6)

X(0) = 0

0 = + .c1 c2

= −c2 c1

X(x) = ( − ) = 2 sinh x.c1 e xλ√ e− xλ√ c1 λ
−−

√

X(L) = 0

sinh L = 0.c1 λ
−−

√

= 0c1 λ > 0 X(x) = 0

λ=0

λ = 0X ′′

X(x) = x+ .c1 c2

x = 0 = 0c2 X(x) = xc1 x = L L = 0c1 = 0c1

λ<0

λ = −µ2

+ X = 0.X ′′ μ2

X(x) = cosμx+ sinμx.c1 c2

x = 0 0 = c1 X(x) = sin µxc2 x = L

0 = sinμL.c2

= 0c2 sin µL = 0 = 0c2

μL = nπ, n = 1, 2, … .

n = 0 n

(2.4.5) λ

(x) = sin , n = 1, 2, 3, …Xn

nπx

L
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for

We should note that the boundary value problem in Equation  is an eigenvalue problem. We can recast the differential
equation as

where

is a linear differential operator. The solutions, , are called eigenfunctions and the ’s are the eigenvalues. We will elaborate
more on this characterization later in the next chapter.

We have found the product solutions of the heat equation (2.1.1) satisfying the boundary conditions. These are

However, these do not necessarily satisfy the initial condition . What we do get is

So, if the initial condition is in one of these forms, we can pick out the right value for  and we are done.

For other initial conditions, we have to do more work. Note, since the heat equation is linear, the linear combination of the product
solutions is also a solution of the heat equation. The general solution satisfying the given boundary conditions is given as

The coefficients in the general solution are determined using the initial condition. Namely, setting  in the general solution, we
have

So, if we know , can we find the coefficients, ? If we can, then we will have the solution to the full initial-boundary value
problem.

The expression for  is a Fourier sine series. We will need to digress into the study of Fourier series in order to see how one can
find the Fourier series coefficients given . Before proceeding, we will show that this process is not uncommon by applying the
Method of Separation of Variables to the wave equation in the next section.

Wave Equation

In this section we will apply the Method of Separation of Variables to the one dimensional wave equation, given by

subject to the boundary conditions

and the initial conditions

This problem applies to the propagation of waves on a string of length  with both ends fixed so that they do not move. 
represents the vertical displacement of the string over time. The derivation of the wave equation assumes that the vertical

= − = − , n = 1, 2, 3, … .λn μ2
n ( )

nπ

L

2

(2.4.5)

LX = λX,

L = =D2 d2

dx2

(x)Xn λn

(x, t) = sin , n = 1, 2, 3, … .un ek tλn
nπx

L
(2.4.7)

u(x, 0) = f(x)

(x, 0) = sin , n = 1, 2, 3, … .un
nπx

L

n

u(x, t) = sin .∑
n=1

∞

bne
k tλn

nπx

L
(2.4.8)

t = 0

f(x) = u(x, 0) = sin .∑
n=1

∞

bn
nπx

L

f(x) bn

f(x)
f(x)

= , t > 0, 0 ≤ xłL,
u∂2

t∂2
c2 u∂2

x∂2
(2.4.9)

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f(x), (x, 0) = g(x), 0 < x < L.ut

L u(x, t)
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displacement is small and the string is uniform. The constant  is the wave speed, given by

where  is the tension in the string and  is the mass per unit length. We can understand this in terms of string instruments. The
tension can be adjusted to produce different tones and the makeup of the string (nylon or steel, thick or thin) also has an effect. In
some cases the mass density is changed simply by using thicker strings. Thus, the thicker strings in a piano produce lower
frequency notes.

The  term gives the acceleration of a piece of the string. The  is the concavity of the string. Thus, for a positive concavity the
string is curved upward near the point of interest. Thus, neighboring points tend to pull upward towards the equilibrium position. If
the concavity is negative, it would cause a negative acceleration.

The solution of this problem is easily found using separation of variables. We let . Then we find

which can be rewritten as

Again, we have separated the functions of time on one side and space on the other side. Therefore, we set each function equal to a
constant, .

This leads to two equations:

As before, we have the boundary conditions on :

giving the solutions, as shown in Figure ,

c

c = ,
τ

μ

−−
√

τ µ

utt uxx

u(x, t) = X(x)T (t)

X = T ,T ′′ c2X ′′

= .
1

c2

T ′′

T

X ′′

X

λ

= =
1

c2

T ′′

T
  

function of t

X ′′

X
 

function of x

λ.
 

constant

= λT ,T ′′ c2 (2.4.10)

= λX.X ′′ (2.4.11)

X(x)

X(0) = 0, and X(L) = 0,

2.4.1

(x) = sin , = − .Xn

nπx

L
λn ( )

nπ

L

2
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Figure : The first three harmonics of the vibrating string.

The main difference from the solution of the heat equation is the form of the time function. Namely, from Equation  we
have to solve

This equation takes a familiar form. We let

then we have

This is the differential equation for simple harmonic motion and  is the angular frequency. The solutions are easily found as

Therefore, we have found that the product solutions of the wave equation take the forms  and . The
general solution, a superposition of all product solutions, is given by

This solution satisfies the wave equation and the boundary conditions. We still need to satisfy the initial conditions. Note that there
are two initial conditions, since the wave equation is second order in time.

First, we have . Thus,

2.4.1

(2.4.10)

+ T = 0.T ′′ ( )
nπc

L

2
(2.4.12)

= ,ωn

nπc

L

+ T = 0.T ′′ ω2
n

ωn

T (t) = cos t+ sin t.An ωn Bn ωn (2.4.13)

sin cos tnπx

L
ωn sin sin tnπx

L
ωn

u(x, t) = [ cos + sin ] sin .∑
n=1

∞

An

nπct

L
Bn

nπct

L

nπx

L
(2.4.14)

u(x, 0) = f(x)

f(x) = u(x, 0) = sin .∑
n=1

∞

An

nπx

L
(2.4.15)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90249?pdf


2.4.6 https://math.libretexts.org/@go/page/90249

In order to obtain the condition on the initial velocity, , we need to differentiate the general solution with respect to 
:

Then, we have from the initial velocity

So, applying the two initial conditions, we have found that  and , are represented as Fourier sine series. In order to
complete the problem we need to determine the coefficients  and  for . Once we have these, we have the
complete solution to the wave equation. We had seen similar results for the heat equation. In the next chapter we will find out how
to determine these Fourier coefficients for such series of sinusoidal functions.

This page titled 2.4: Separation of Variables is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

(x, 0) = g(x)ut
t

(x, t) = [− sin + cos ] sin .ut ∑
n=1

∞ nπc

L
An

nπct

L
Bn

nπct

L

nπx

L
(2.4.16)

g(x) = (x, 0) = sin .ut ∑
n=1

∞ nπc

L
Bn

nπx

L
(2.4.17)

f(x) g(x)
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2.5: Laplace’s Equation in 2D
Another generic partial differential equation is Laplace’s equation, . Laplace’s equation arises in many applications. As an
example, consider a thin rectangular plate with boundaries set at fixed temperatures. Assume that any temperature changes of the
plate are governed by the heat equation, , subject to these boundary conditions. However, after a long period of time the
plate may reach thermal equilibrium. If the boundary temperature is zero, then the plate temperature decays to zero across the plate.
However, if the boundaries are maintained at a fixed nonzero temperature, which means energy is being put into the system to
maintain the boundary conditions, the internal temperature may reach a nonzero equilibrium temperature. Reaching thermal
equilibrium means that asymptotically in time the solution becomes time independent. Thus, the equilibrium state is a solution of
the time independent heat equation, .

A second example comes from electrostatics. Letting  be the electric potential, one has for a static charge distribution, ,
that the electric field, , satisfies one of Maxwell’s equations, . In regions devoid of charge, , the
electric potential satisfies Laplace’s equation, .

As a final example, Laplace’s equation appears in two-dimensional fluid flow. For an incompressible flow, . If the flow is
irrotational, then . We can introduce a velocity potential, . Thus,  vanishes by a vector identity and 

 implies . So, once again we obtain Laplace’s equation.

Solutions of Laplace’s equation are called harmonic functions and we will encounter these in Chapter 8 on complex variables and
in Section 2.5 we will apply complex variable techniques to solve the two-dimensional Laplace equation. In this section we use the
Method of Separation of Variables to solve simple examples of Laplace’s equation in two dimensions. Three dimensional problems
will studied in Chapter 6.

Let’s consider Laplace’s equation in Cartesian coordinates,

with the boundary conditions

The boundary conditions are shown in Figure .

Figure : In this figure we show the domain and boundary conditions for the example of determining the equilibrium
temperature distribution for a rectangular plate.

Solution
As with the heat and wave equations, we can solve this problem using the method of separation of variables. Let 

. Then, Laplace’s equation becomes

and we can separate the  and  dependent functions and introduce a separation constant, ,

u = 0∇2

= k uut ∇2

u = 0∇2

ϕ(r) ρ(r)
E = ∇ϕ ∇ ⋅ E = ρ/ϵ0 ρ(r) = 0

ϕ = 0∇2

∇ ⋅ v = 0
∇ ×v = 0 v = ∇ϕ ∇ ×v

∇ ⋅ v = 0 ϕ = 0∇2

 Example : Equilibrium Temperature Distribution for a Rectangular Plate2.5.1

+ = 0, 0 < x < L, 0 < y < Huxx uyy

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f(x), u(x, H) = 0.

2.5.1

2.5.1

u(x, y) = X(x)Y (y)

Y +X = 0X ′′ Y ′′

x y λ
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Thus, we are led to two differential equations,

The general solution of the equation for  is given by

The boundary condition  implies . So, we have

Thus,

Inserting this result into the expression for , we have

Since we already know the values of the eigenvalues  from the eigenvalue problem for , we have that the -
dependence is given by

So, the product solutions are given by

These solutions satisfy Laplace’s equation and the three homogeneous boundary conditions and in the problem.

The remaining boundary condition, , still needs to be satisfied. Inserting  in the product solutions does not
satisfy the boundary condition unless  is proportional to one of the eigenfunctions . So, we first write down the
general solution as a linear combination of the product solutions,

Now we apply the boundary condition, , to find that

Defining , this becomes

We see that the determination of the unknown coefficients, , is simply done by recognizing that this is a Fourier sine series.
We now move on to the study of Fourier series and provide more complete answers in Chapter 6.

= − = −λ.
X ′′

X

Y ′′

Y

+λXX ′′

−λYY ′′
= 0,

= 0. (2.5.1)

Y (y)

Y (y) = + .c1e yλ√ c2e− yλ√

u(x, H) = 0 Y (H) = 0

+ = 0.c1e Hλ√ c2e− Hλ√

= − .c2 c1e2 Hλ√

Y (y)

Y (y) = −c1e yλ√ c1e2 Hλ√ e− yλ√

= ( − )c1e Hλ√ e− Hλ√ e yλ√ e Hλ√ e− yλ√

= ( − )c1e Hλ√ e− (H−y)λ√ e (H−y)λ√

= −2 sinh (H −y).c1e Hλ√ λ
−−

√ (2.5.2)

λn X(x) y

(y) = sinh .Yn

nπ(H −y)

L

(x, y) = sin sinh , n = 1, 2, … .un

nπx

L

nπ(H −y)

L

u(x, 0) = f(x) y = 0
f(x) (x)Xn

u(x, y) = sin sinh .∑
n=1

∞

an

nπx

L

nπ(H −y)

L
(2.5.3)

u(x, 0) = f(x)

f(x) = sinh sin .∑
n=1

∞

an

nπH

L

nπx

L
(2.5.4)

= sinhbn an
nπH

L

f(x) = sin .∑
n=1

∞

bn

nπx

L
(2.5.5)
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2.6: Classification of Second Order PDEs
We have studied several examples of partial differential equations, the heat equation, the wave equation, and Laplace’s equation.
These equations are examples of parabolic, hyperbolic, and elliptic equations, respectively. Given a general second order linear
partial differential equation, how can we tell what type it is? This is known as the classification of second order PDEs.

Let . Then, the general form of a linear second order partial differential equation is given by

In this section we will show that this equation can be transformed into one of three types of second order partial differential
equations.

Let  and  be an invertible transformation from coordinates  to coordinates . Furthermore, let 
. How does the partial differential equation  transform?

We first need to transform the derivatives of . We have

Inserting these derivatives into Equation , we have

Picking the right transformation, we can eliminate some of the second order derivative terms depending on the type of differential
equation. This leads to three types: elliptic, hyperbolic, or parabolic.

For example, if transformations can be found to make  and , then the equation reduces

. Such an equation is called hyperbolic. A generic example of a hyperbolic equation is the wave equation.

The conditions that  and  give the conditions

u = u(x, y)

a(x, y) +2b(x, y) +c(x, y) +d(x, y) +e(x, y) +f(x, y)u = g(x, y).uxx uxy uyy ux uy (2.6.1)

x = x(ξ, η) y = y(ξ, η) (ξ, η) (x, y)
u(x(ξ, η), y(ξ, η)) = U(ξ, η) (2.6.1)

u(x, t)

ux

uy

uxx

uyy

uxy

= + ,Uξξx Uηηx

= + ,Uξξy Uηηy

= ( + ),
∂

∂x
Uξξx Uηηx

= +2 + + + ,Uξξξ
2
x Uξηξxηx Uηηη

2
x Uξξxx Uηηxx

= ( + ),
∂

∂y
Uξξy Uηηy

= +2 + + + ,Uξξξ
2
y Uξηξyηy Uηηη

2
y Uξξyy Uηηyy

= ( + ),
∂

∂y
Uξξx Uηηx

= + + + + + .Uξξξxξy Uξηξxηy Uηξξyηx Uηηηxηy Uξξxy Uηηxy (2.6.2)

(2.6.1)

g−fU = a +2b +c +d +euxx uxy uyy ux uy

= a ( +2 + + + )Uξξξ
2
x Uξηξxηx Uηηη

2
x Uξξxx Uηηxx

+2b( + +Uξξξxξy Uξηξxηy Uξηξyηx

+ η+y+ + )Uηηηx Uξξxy Uηηxy

+c ( +2 + + + )Uξξξ
2
y Uξηξyηy Uηηη2

y Uξξyy Uηηyy

+d( + )Uξξx Uηηx
+e( + )Uξξy Uηηy

= (a +2b +c )ξ2
x ξxξy ξ2

y Uξξ

+(2a +2b +2b +2c )ξxηx ξxηy ξyηx ξyηy Uξη

+(a +2b +c )η2
x ηxηy η2

y Uηη

+(a +2b +c +d +e )ξxx ξxy ξyy ξx ξy Uξ

+(a +2b +c +d +e )ηxx ηxy ηyy ηx ηy Uη

= A +2B +C +D +E .Uξξ Uξη Uηη Uξ Uη (2.6.3)

A ≡ 0 C ≡ 0

= lower order terms.Uξη

A ≡ 0 C ≡ 0
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) We seek  and  satisfying these two equations, which are of the same form. Let’s assume that  is a constant curve in
the -plane. Furthermore, if this curve is the graph of a function, , then

Then

Inserting this expression in , we have

This equation is satisfied if  satisfies the differential equation

So, for , we choose  and  to be constant on these characteristic curves.

Show that  is hyperbolic.

Solution
In this case we have  and . Then,

This gives . So, we choose  and  constant on these characteristic curves. Therefore, we let  
.

Let’s see if this transformation transforms the differential equation into a canonical form. Let . Then, the
needed derivatives become

Inserting these derivatives into the differential equation, we have

a +2b +cξ2
x ξxξy ξ2

y

a +2b +cη2
x ηxηy η2

y

= 0.

= 0. (2.6.4)

ξ η ξ = ξ(x, y)
xy y = y(x)

= + = 0.
dξ

dx
ξx

dy

dx
ξy

= − .
dy

dx

ξx

ξy

A = 0

A = a +2b +cξ2
x ξxξy ξ2

y

= (a +2b +c)ξ2
y ( )

ξx

ξy

2
ξx

ξy

= (a −2b +c) = 0.ξ2
y ( )

dy

dx

2
dy

dx
(2.6.5)

y(x)

= .
dy

dx

b± −acb2
− −−−−−

√

a

A = 0 ξ η

 Example 2.6.1

− = 0uxx uyy

a = 1 = −c b = 0

= ±1.
dy

dx

y(x) = ±x+c ξ η ξ = x−y,
η = x+y

u(x, y) = U(ξ, η)

ux

uy

uxx

uyy

= + = + .Uξξx Uηηx Uξ Uη

= + = − + .Uξξy Uηηy Uξ Uη

= ( + )
∂

∂x
Uξ Uη

= + + +Uξξξx Uξηηx Uηξξx Uηηηx
= +2 + .Uξξ Uξη Uηη

= (− + )
∂

∂y
Uξ Uη

= − − + +Uξξξy Uξηηy Uηξξy Uηηηy

= −2 + .Uξξ Uξη Uηη (2.6.6)
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Thus, the transformed equation is . Thus, showing it is a hyperbolic equation.

We have seen that  and  vanish for  and  constant along the characteristics

for second order hyperbolic equations. This is possible when  since this leads to two characteristics.

In general, if we consider the second order operator

then this operator can be transformed to the new form

if . An example of a hyperbolic equation is the wave equation, .

When , then there is only one characteristic solution, . This is the parabolic case. But, . So,

or

Also,  implies that .

Inserting these expression into coefficient , we have

Therefore, in the parabolic case,  and , and  transforms to

when . This is the canonical form for a parabolic operator. An example of a parabolic equation is the heat equation, 
.

Finally, when , we have the elliptic case. In this case we Elliptic case. cannot force  or . However, in this
case we can force . As we just showed, we can write

Letting , we can choose  to satisfy .

Furthermore, setting , we can make  and  transforms to

when . This is the canonical form for an elliptic operator. An example of an elliptic equation is Laplace’s equation, 
.

0 = − = 4 .uxx uyy Uξη

= 0Uξη

A C ξ(x, y) η(x, y)

=
dy

dx

b± −acb2
− −−−−−

√

a

−ac > 0b2

L[u] = a(x, y) +2b(x, y) +c(x, y) ,uxx uxy uyy

[U] = BL′
Uξη

−ac > 0b2 =utt uxx

−ac = 0b2 =
dy

dx

b
a

= −
dy

dx

ξx

ξy

= − ,
b

a

ξx

ξy

a +b = 0.ξx ξy

−ac = 0b2 c = /ab2

B

B = 2a +2b +2b +2cξxηx ξxηy ξyηx ξyηy

= 2(a +b ) +2(b +c )ξx ξy ηx ξx ξy ηy

= 2 (a +b ) = 0.
b

a
ξx ξy ηy (2.6.7)

A = 0 B = 0 L[u]

[U] = CL′
Uηη

−ac = 0b2

=ut uxx

−ac < 0b2 A = 0 C = 0
B = 0

B = 2(a +b ) +2(b +c ) .ξx ξy ηx ξx ξy ηy

= 0ηx ξ b +c = 0ξx ξy

A = a +2b +c = a −c =ξ2
x ξxξy ξ2

y ξ2
x ξ2

y

ac−b2

c
ξ2
x

C = a +2b +c = cη2
x ηxηy η2

y η2
y

= cac−b2

c
ξ2
x η2

y A = c L[u]

[U] = A[ + ]L′
Uξξ Uηη

−ac < 0b2

+ = 0uxx uyy
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The second order differential operator

can be transformed to one of the following forms:

. Hyperbolic: 

. Parabolic: 

. Elliptic: 

As a final note, the terminology used in this classification is borrowed from the general theory of quadratic equations which are the
equations for translated and rotated conics. Recall that the general quadratic equation in two variable takes the form

One can complete the squares in  and  to obtain the new form

So, translating points  using the transformations  and , we find the simpler form

Here we dropped all primes.

We can also introduce transformations to simplify the quadratic terms. Consider a rotation of the coordinate axes by ,

or

The resulting equation takes the form

where

Furthermore, one can show that . From the form , the resulting quadratic
equation takes one of the following forms:

. Hyperbolic: .

. Parabolic: .

. Elliptic: .

Thus, one can see the connection between the classification of quadratic equations and second order partial differential equations in
two independent variables.

This page titled 2.6: Classification of Second Order PDEs is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

 Classification of Second Order PDEs

L[u] = a(x, y) +2b(x, y) +c(x, y) ,uxx uxy uyy

−ac > 0b2 L[u] = B(x, y)uxy
−ac = 0b2 L[u] = C(x, y)uyy
−ac < 0b2 L[u] = A(x, y)[ + ]uxx uyy

a +2bxy+c +dx+ey+f = 0.x2 y2 (2.6.8)

x y

a(x−h +2bxy+c(y−k + = 0.)2 )2 f ′

(x, y) = x−hx′ = y−ky′

a +2bxy+c +f = 0.x2 y2

θ

x′

y′
= x cosθ+y sinθ
= −x sinθ+y cosθ, (2.6.9)

x

y

= cosθ− sinθx′ y′

= sinθ+ cosθ.x′ y′ (2.6.10)

A +2B +C +D = 0,x′2 x′y′ y′2

A

B

C

= a θ+2b sinθcosθ+c θ.cos2 sin2

= (c−a) sinθcosθ+b( θ− ).cos2 sinθ

= a θ−2b sinθcosθ+c θ.sin2 cos2 (2.6.11)

−ac = −ACb2 B2 A +2B +C +D = 0x′2 x′y′ y′2

−ac > 0b2 A −C +D = 0x2 y2

−ac = 0b2 A +By+D = 0x2

−ac < 0b2 A +C +D = 0x2 y2
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2.7: d’Alembert’s Solution of the Wave Equation
A general solution of the one-dimensional wave equation can be found. This solution was first Jean-Baptiste le Rond d’Alembert
(1717- 1783) and is referred to as d’Alembert’s formula. In this section we will derive d’Alembert’s formula and then use it to
arrive at solutions to the wave equation on infinite, semi-infinite, and finite intervals.

We consider the wave equation in the form  and introduce the transformation

Note that , and  are the characteristics of the wave equation.

We also need to note how derivatives transform. For example

Therefore, as an operator, we have

Similarly, one can show that

Using these results, the wave equation becomes

Therefore, the wave equation has transformed into the simpler equation,

A further integration gives

Therefore, we have as the general solution of the wave equation,

where  and  are two arbitrary, twice differentiable functions. As  is increased, we see that  gets horizontally shifted
to the left and  gets horizontally shifted to the right. As a result, we conclude that the solution of the wave equation can
be seen as the sum of left and right traveling waves.

Let’s use initial conditions to solve for the unknown functions. We let

=utt c2uxx

u(x, t) = U(ξ, η), where ξ = x+ct and η = x−ct.

ξ η

∂u

∂x
=

∂U(ξ, η)

∂x

= +
∂U(ξ, η)

∂ξ

∂ξ

∂x

∂U(ξ, η)

∂η

∂η

∂x

= + .
∂U(ξ, η)

∂ξ

∂U(ξ, η)

∂η
(2.7.1)

= + .
∂

∂x

∂

∂ξ

∂

∂η

= c −c .
∂

∂t

∂

∂ξ

∂

∂η

0 = −utt c2uxx

=( − )u
∂2

∂t2
c2 ∂2

∂x2

=( +c )( −c )u
∂

∂t

∂

∂x

∂

∂t

∂

∂x

=(c −c +c +c )(c −c −c −c )U
∂

∂ξ

∂

∂η

∂

∂ξ

∂

∂η

∂

∂ξ

∂

∂η

∂

∂ξ

∂

∂η

= −4 U.c2 ∂

∂ξ

∂

∂η
(2.7.2)

= 0.Uηξ

U(ξ, η) = Γ( )d +F (ξ) = G(η) +F (η).∫
η

η′ η′

u(x, t) = F (x+ct) +G(x−ct), (2.7.3)

F G t F (x+ct)

G(x−ct)
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Applying this to the general solution, we have

We need to solve for  and  in terms of  and . Integrating Equation , we have

Adding this result to Equation , gives

Subtracting from Equation , gives

Now we can write out the solution , yielding d’Alembert’s solution

When  and  are defined for all , the solution is well-defined. However, there are problems on more restricted
domains. In the next examples we will consider the semi-infinite and finite length string problems.In each case we will need to
consider the domain of dependence and the domain of influence of specific points. These concepts are shown in Figure . The
domain of dependence of point P is red region. The point P depends on the values of  and  at points inside the domain. The
domain of influence of P is the blue region. The points in the region are influenced by the values of  and  at P.

Figure : The domain of dependence of point P is red region. The point P depends on the values of  and  at points inside the
domain. The domain of influence of P is the blue region. The points in the region are influenced by the values of  and  at P.

Use d’Alembert’s solution to solve

Solution
The d’Alembert solution is not well-defined for this problem because  is not defined for  for , .
There are similar problems for . This can be seen by looking at the characteristics in the -plane. In Figure  there are
characteristics emanating from the points marked by  and  that intersect in the domain . The point of intersection of

u(x, 0) = f(x), (x, 0) = g(x), |x| < ∞.ut

f(x)

g(x)

= F (x) +G(x)

= c[ (x) − x)].F ′ G′

(2.7.4)

(2.7.5)

F (x) G(x) f(x) g(x) (2.7.5)

g(s)dx = F (x) −G(x) −F (0) +G(0).
1

c
∫

x

0

(2.7.5)

F (x) = f(x) + g(s)ds+ [F (0) −G(0)].
1

2

1

2c
∫

x

0

1

2

(2.7.5)

G(x) = f(x) − g(s)ds− [F (0) −G(0)].
1

2

1

2c
∫

x

0

1

2

u(x, t) = F (x+ct) +G(x−ct)

u(x, t) = [f(x+ct) +f(x−ct)] + g(s)ds.
1

2

1

2c
∫

x+ct

x−ct

(2.7.6)

f(x) g(x) x ∈ R

2.7.1

u ut
u ut

2.7.1 u ut
u ut

 Example 2.7.1

= , u(x, 0) = f(x), (x, 0) = g(x), 0 ≤ x < ∞.utt c2uxx ut

f(x−ct) x−ct < 0 c t > 0

g(x) xt 2.7.2

η0 ξ0 x > 0
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the blue lines have a domain of dependence entirely in the region , , however the domain of dependence of point P
reaches outside this region. Only characteristics  reach point P, but characteristics  do not. But, we need 

 and  for  to form a solution.

Figure : The characteristics for the semi-infinite string.

This can be remedied if we specified boundary conditions at . For example, Fixed end boundary condition we will
assume the end  is fixed,

Imagine an infinite string with one end (at ) tied to a pole.

Since , we have

Letting , this gives  .

Note that

Comparing the expressions for  and , we see that

These relations imply that we can extend the functions into the region  if we make them odd functions, or what are called
odd extensions. An example is shown in Figure .

Another type of boundary condition is if the end  is free,

In this case we could have an infinite string tied to a ring and that ring is allowed to slide freely up and down a pole.

One can prove that this leads to

Thus, we can use an even extension of these function to produce solutions.

x t > 0

ξ = x+ct η = x−ct

f(η) g(x) x < ct

2.7.2

x = 0

x = 0

u(0, t) = 0, t ≥ 0.

x = 0

u(x, t) = F (x+ct) +G(x−ct)

u(0, t) = F (ct) +G(−ct) = 0.

ζ = −ct G(ζ) = −F (−ζ), ζ ≤ 0

G(ζ)

−F (−ζ)

= f(ζ) − g(s)ds
1

2

1

2c
∫

ζ

0

= − f(−ζ) − g(s)ds
1

2

1

2c
∫

−ζ

0

= − f(−ζ) + g(σ)dσ
1

2

1

2c
∫

ζ

0

(2.7.7)

G(ζ) −F (−ζ)

f(ζ) = −f(−ζ), g(ζ) = −g(−ζ).

x < 0

2.7.3

x = 0

(0, t) = 0, t ≥ 0.ux

f(−ξ) = f(ξ), g(−ξ) = g(ξ).
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Solve the initial-boundary value problem

Solution
This is a semi-infinite string with a fixed end. Initially it is plucked to produce a nonzero triangular profile for .
Since the initial velocity is zero, the general solution is found from d’Alembert’s solution,

where  is the odd extension of . In Figure  we show the initial condition and its odd extension. The
odd extension is obtained through reflection of  about the origin.

Figure : The initial condition and its odd extension. The odd extension is obtained through reflection of  about the
origin.

The next step is to look at the horizontal shifts of . Several examples are shown in Figure .These show the left and
right traveling waves.

 Example 2.7.2

utt

u(x, 0)

(x, 0)ut

u(0, t)

= , 0 ≤ x < ∞, t > 0.c2uxx

=
⎧

⎩
⎨
⎪

⎪

x,

2 −x,

0,

0 ≤ x ≤ 1,

1 ≤ x ≤ 2,

x > 2,

0 ≤ x < ∞

= 0, 0 ≤ x < ∞.

= 0, t > 0. (2.7.8)

0 ≤ x ≤ 2

u(x, t) = [ (x+ct) + (x−ct)],
1

2
f0 f0

(x)f0 f(x) = u(x, 0) 2.7.3

f(x)

2.7.3 f(x)

(x)f0 2.7.4
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Figure : Examples of  and .

In Figure  we show superimposed plots of  and  for given times. The initial profile in at the bottom.
By the time  the full traveling wave has emerged. The solution to the problem emerges on the right side of the figure by
averaging each plot.

2.7.4 (x+ ct)f0 (x− ct)f0

2.7.5 (x+ct)f0 (x−ct)f0

ct = 2
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Figure : Superimposed plots of  and  for given times. The initial profile in at the bottom. By the
time  the full traveling wave has emerged.

2.7.5 (x+ ct)f0 (x− ct)f0

ct = 2
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Figure : On the left is a plot of ,  from Figure  and the average, . On the right the solution
alone is shown for  at bottom to  at top for the semi-infinite string problem

Use d’Alembert’s solution to solve

Solution
The general solution of the wave equation was found in the form

However, for this problem we can only obtain information for values of  and  such that  and .
In Figure  the characteristics  and  for , . The main (gray) triangle, which is the domain
of dependence of the point , is the only region in which the solution can be found based solely on the initial
conditions. As with the previous problem, boundary conditions will need to be given in order to extend the domain of the
solution.

2.7.6 f(x+ ct) f(x− ct) 2.7.5 u(x, t)
ct = 0 ct = 1

 Example 2.7.3

= , u(x, 0) = f(x), (x, 0) = g(x), 0 ≤ x ≤ ℓ.utt c2uxx ut

u(x, t) = F (x+ct) +G(x−ct).

x t 0 ≤ x+ct ≤ ℓ 0 ≤ x−ct ≤ ℓ

2.7.7 x = ξ+ct x = η−ct 0 ≤ ξ η ≤ ℓ

(ℓ, 2, ℓ/2c)
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Figure : The characteristics emanating from the interval  for the finite string problem.

In the last example we saw that a fixed boundary at  could be satisfied when  and  are extended as odd
functions. In Figure  we indicate how the characteristics are affected by drawing in the new one as red dashed lines. This
allows us to now construct solutions based on the initial conditions under the line  for . The new region
for which we can construct solutions from the initial conditions is indicated in gray in Figure .

Figure : The red dashed lines are the characteristics from the interval  from using the odd extension about .

We can add characteristics on the right by adding a boundary condition at . Again, we could use fixed , or
free, , boundary conditions. This allows us to now construct solutions based on the initial conditions for 

.

Let’s consider a fixed boundary condition at . Then, the solution must satisfy

To see what this means, let . Then, this condition gives (since )

Note that  is defined for . Therefore, this is a well-defined extension of the domain of .

Note that

Comparing the expressions for  and , we see that

2.7.7 0 ≤ x ≤ ℓ

x = 0 f(x) g(x)

2.7.8

x = ℓ −ct 0 ≤ x ≤ ℓ

2.7.8

2.7.8 [−ℓ, 0] x = 0

x = ℓ u(ℓ, t) = 0

(ℓ, t) = 0ux
ℓ ≤ x ≤ 2ℓ

x = ℓ

u(ℓ, t) = F (ℓ +ct) +G(ℓ −ct) = 0.

ζ = ℓ +ct ct = ζ−ℓ

F (ξ) = −G(2ℓ −ξ), ℓ ≤ ξ ≤ 2ℓ.

G(2ℓ −ζ) 0 ≤ 2ℓ −ζ ≤ ℓ F (x)

F (ξ)

−G(2ℓ −ξ)

= f(ξ) + g(s)ds.
1

2

1

2c
∫

ℓ

0

= − f(2ℓ −ξ) + g(s)ds
1

2

1

2c
∫

2ℓ−ξ

0

= − f(2ℓ −ξ) − g(2ℓ −σ)dσ
1

2

1

2c
∫

ξ

0

(2.7.9)

G(ζ) −G(2ℓ −ζ)
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These relations imply that we can extend the functions into the region  if we consider an odd extension of  and 
about . This will give the blue dashed characteristics in Figure  and a larger gray region to construct the solution.

Figure : The red dashed lines are the characteristics from the interval  from using the odd extension about 
and the blue dashed lines are the characteristics from the interval  from using the odd extension about .

So far we have extended  and  to the interval  in order to determine the solution over a larger -domain.
For example, the function  has been extended to

A similar extension is needed for . Inserting these extended functions into d’Alembert’s solution, we can determine  in
the region indicated in Figure .

Even though the original region has been expanded, we have not determined how to find the solution throughout the entire strip, 
. This is accomplished by periodically repeating these extended functions with period . This can be shown from

the two conditions

Now, consider

This shows that  is periodic with period . Since  satisfies the same conditions, then it is as well.

In Figure  we show how the characteristics are extended throughout the domain strip using the periodicity of the extended
initial conditions. The characteristics from the interval endpoints zig zag throughout the domain, filling it up. In the next example
we show how to construct the odd periodic extension of a specific function.

f(ξ) = −f(2ℓ −ξ), g(ξ) = −g(2ℓ −ξ).

x > ℓ f(x) g(x)

x = ℓ 2.7.9

2.7.9 [−ℓ, 0] x = 0
[ℓ, 2ℓ] x = ℓ

f(x) g(x) −ℓ ≤ x ≤ 2ℓ xt

f(x)

(x) =fext

⎧

⎩
⎨
⎪

⎪

−f(−x),

f(x),

−f(2ℓ −x),

−ℓ < x < 0,

0 < x < ℓ,

ℓ < x < 2ℓ.

g(x) u(x, t)

2.7.9

[0, ℓ] ×[0, ∞) 2ℓ

f(x) = −f(−x), −ℓ ≤ x ≤ 0,

f(x) = −f(2ℓ −x), ℓ ≤ x ≤ 2ℓ. (2.7.10)

f(x+2ℓ) = −f(2ℓ −(x−2ℓ))

= −f(−x)

= f(x). (2.7.11)

f(x) 2ℓ g(x)

2.7.10
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Figure : Extending the characteristics throughout the domain strip.

Construct the periodic extension of the plucked string initial profile given by

satisfying fixed boundary conditions at  and .

Solution
We first take the solution and add the odd extension about . Then we add an extension beyond . This process is
shown in Figure .

Figure : Construction of odd periodic extension for (a) The initial profile, . (b) Make  an odd function on 
. (c) Make the odd function periodic with period .

We can use the odd periodic function to construct solutions. In this case we use the result from the last example for obtaining the
solution of the problem in which the initial velocity is zero, . Translations of the odd periodic
extension are shown in Figure .

2.7.10

 Example 2.7.4

f(x) ={
x,

ℓ −x,

0 ≤ x ≤ ,ℓ
2

≤ x ≤ ℓ,ℓ
2

x = 0 x = ℓ

x = 0 x = ℓ

2.7.11

2.7.11 f(x) f(x)
[−ℓ, ℓ] 2ℓ

u(x, t) = [f(x+ct) +f(x−ct)]1
2

2.7.12
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Figure : Translations of the odd periodic extension.

In Figure  we show superimposed plots of  and  for different values of . A box is shown inside which
the physical wave can be constructed. The solution is an average of these odd periodic extensions within this box. This is displayed
in Figure .

2.7.12

2.7.13 f(x+ct) f(x−ct) ct

2.7.14
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Figure : Superimposed translations of the odd periodic extension.

Figure : On the left is a plot of ,  from Figure  and the average, . On the right the solution
alone is shown for  to .

2.7.13

2.7.14 f(x+ ct) f(x− ct) 2.7.13 u(x, t)
ct = 0 ct = 1
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2.8: Problems

Solve the following initial value problems.

a. .
b. .
c. .

Solve the following boundary value problems directly, when possible.

a. .
b. .
c. .

Consider the boundary value problem for the deflection of a horizontal beam fixed at one end,

Solve this problem assuming that  is a constant.

Find the product solutions, , to the heat equation, , on  satisfying the boundary
conditions  and .

Find the product solutions, , to the wave equation , on  satisfying the boundary
conditions  and .

Find product solutions, , to Laplace’s equation, , on the unit square satisfying the boundary
conditions , , , and .

Consider the following boundary value problems. Determine the eigenvalues, , and eigenfunctions,  for each problem.

a. .
b. .
c. .
d. .

In problem d you will not get exact eigenvalues. Show that you obtain a transcendental equation for the eigenvalues in the
form . Find the first three eigenvalues numerically.

 Exercise 2.8.1

+x = 0, x(0) = 2, (0) = 0x′′ x′

+2 −8y = 0, y(0) = 1, (0) = 2y′′ y′ y′

−2x −4y = 0, y(1) = 1, (1) = 0x2y′′ y′ y′

 Exercise 2.8.2

+x = 2, x(0) = 0, (1) = 0x′′ x′

+2 −8y = 0, y(0) = 1, y(1) = 0y′′ y′

+y = 0, y(0) = 1, y(π) = 0y′′

 Exercise 2.8.3

= C, y(0) = 0, (0) = 0, (L) = 0, (L) = 0.
yd4

dx4
y′ y′′ y′′′

C

 Exercise 2.8.4

u(x, t) = T (t)X(x) − = 0ut uxx [0, π]

(0, t) = 0ux u(π, t) = 0

 Exercise 2.8.5

u(x, t) = T (t)X(x) = 2utt uxx [0, 2π]

u(0, t) = 0 (2π, t) = 0ux

 Exercise 2.8.6

u(x, t) = X(x)Y (y) + = 0uxx uyy
u(0, y) = 0 u(1, y) = g(y) u(x, 0) = 0 u(x, 1) = 0

 Exercise 2.8.7

λ y(x)

+λy = 0, y(0) = 0, (1) = 0y′′ y′

−λy = 0, y(−π) = 0, (π) = 0y′′ y′

+x +λy = 0, y(1) = 0, y(2) = 0x2y′′ y′

( +λy = 0, y(1) = 0, (e) = 0x2y′)′ y′

 Note

tanz = 2z
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Classify the following equations as either hyperbolic, parabolic, or elliptic.

a. .
b. .
c. .
d. .

Use d’Alembert’s solution to prove

for the semi-infinite string satisfying the free end condition .

Derive a solution similar to d’Alembert’s solution for the equation .

Construct the appropriate periodic extension of the plucked string initial profile given by

satisfying the boundary conditions at  and  for .

Find and sketch the solution of the problem

This page titled 2.8: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

 Exercise 2.8.8

+ + = 0uyy uxy uxx
3 +2 +5 = 0uxx uxy uyy

+2xy + = 0x2uxx uxy y2uyy
+2xy +( +4 ) = 0y2uxx uxy x2 x4 uyy

 Exercise 2.8.9

f(−ζ) = f(ζ), g(−ζ) = g(ζ)

(0, t) = 0ux

 Exercise 2.8.10

+2 −3u = 0utt uxt

 Exercise 2.8.11

f(x) ={
x,

ℓ −x,

0 ≤ x ≤ ,ℓ
2

≤ x ≤ ℓ,ℓ
2

u(0, t) = 0 (ℓ, t) = 0ux t > 0

 Exercise 2.8.12

utt

u(x, 0)

(x, 0)ut

u(0, t)

u(1, t)

= , 0 ≤ x ≤ 1, t > ouxx

=

⎧

⎩
⎨

⎪⎪

⎪⎪

0,

1,

0,

0 ≤ x < ,1
4

≤ x ≤ ,1
4

3
4

< x ≤ 1,3
4

= 0,

= 0, t > 0,

= 0, t > 0,
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CHAPTER OVERVIEW

3: Trigonometric Fourier Series

“Ordinary language is totally unsuited for expressing what physics really asserts, since
the words of everyday life are not sufficiently abstract. Only mathematics and
mathematical logic can say as little as the physicist means to say.” Bertrand Russell
(1872-1970)

3.1: Introduction to Fourier Series
3.2: Fourier Trigonometric Series
3.3: Fourier Series Over Other Intervals
3.4: Sine and Cosine Series
3.5: Solution of the Heat Equation
3.6: Finite Length Strings
3.7: The Gibbs Phenomenon
3.8: Problems
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3.1: Introduction to Fourier Series
We will now turn to the study of trigonometric series. You have seen that functions have series representations as expansions in
powers of , or , in the form of Maclaurin and Taylor series. Recall that the Taylor series expansion is given by

where the expansion coefficients are determined as

From the study of the heat equation and wave equation, we have found that there are infinite series expansions over other functions,
such as sine functions. We now turn to such expansions and in the next chapter we will find out that expansions over special sets of
functions are not uncommon in physics. But, first we turn to Fourier trigonometric series.

We will begin with the study of the Fourier trigonometric series expansion

We will find expressions useful for determining the Fourier coefficients  given a function  defined on . We
will also see if the resulting infinite series reproduces . However, we first begin with some basic ideas involving simple sums
of sinusoidal functions.

There is a natural appearance of such sums over sinusoidal functions in music. A pure note can be represented as

where  is the amplitude,  is the frequency in hertz (Hz), and  is time in seconds. The amplitude is related to the volume of the
sound. The larger the amplitude, the louder the sound. In Figure  we show plots of two such tones with  in the top
plot and  in the bottom one.

x x −a

f(x) = (x −a ,∑
n=0

∞

cn )n

= .cn

(a)f (n)

n!

f(x) = + cos + sin .
a0

2
∑
n=1

∞

an

nπx

L
bn

nπx

L

{ , }an bn f(x) [−L, L]

f(x)

y(t) = A sin(2πft),

A f t

3.1.2 f = 2 Hz

f = 5 Hz
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Figure : Plots of  on  for  and .

In these plots you should notice the difference due to the amplitudes and the frequencies. You can easily reproduce these plots and
others in your favorite plotting utility.

As an aside, you should be cautious when plotting functions, or sampling data. The plots you get might not be what you expect,
even for a simple sine function. In Figure  we show four plots of the function . In the top left you see a
proper rendering of this function. However, if you use a different number of points to plot this function, the results may be
surprising. In this example we show what happens if you use  points instead of the  points used in the first
plot. Such disparities are not only possible when plotting functions, but are also present when collecting data. Typically, when you
sample a set of data, you only gather a finite amount of information at a fixed rate. This could happen when getting data on ocean
wave heights, digitizing music and other audio to put on your computer, or any other process when you attempt to analyze a
continuous signal.

3.1.1 y(t) = A sin(2πft) [0, 5] f = 2 Hz f = 5 Hz

3.1.2 y(t) = 2 sin(4πt)

N = 200, 100, 101 201
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Figure : Problems can occur while plotting. Here we plot the function  using  points.

Next, we consider what happens when we add several pure tones. After all, most of the sounds that we hear are in fact a
combination of pure tones with different amplitudes and frequencies. In Figure  we see what happens when we add several
sinusoids. Note that as one adds more and more tones with different characteristics, the resulting signal gets more complicated.
However, we still have a function of time. In this chapter we will ask, “Given a function , can we find a set of sinusoidal
functions whose sum converges to ?”

3.1.2 y(t) = 2 sin 4πt N = 201, 200, 100, 101

3.1.3

f(t)

f(t)
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Figure : Superposition of several sinusoids.

Looking at the superpositions in Figure , we see that the sums yield functions that appear to be periodic. This is not to be
unexpected. We recall that a periodic function is one in which the function values repeat over the domain of the function. The
length of the smallest part of the domain which repeats is called the period. We can define this more precisely: A function is said to
be periodic with period  if  for all  and the smallest such positive number  is called the period.

For example, we consider the functions used in Figure . We began with . Recall from your first studies of
trigonometric functions that one can determine the period by dividing the coefficient of  into  to get the period. In this case we
have

Looking at the top plot in Figure  we can verify this result. (You can count the full number of cycles in the graph and divide
this into the total time to get a more accurate value of the period.)

In general, if , the period is found as

Of course, this result makes sense, as the unit of frequency, the hertz, is also defined as , or cycles per second.

Returning to Figure , the functions , , and  have periods of 
, and , respectively. Each superposition in Figure  retains a period that is the least common multiple of the

periods of the signals added. For both plots, this is .

Our goal will be to start with a function and then determine the amplitudes of the simple sinusoids needed to sum to that function.
We will see that this might involve an infinite number of such terms. Thus, we will be studying an infinite series of sinusoidal
functions.

3.1.3

3.1.3

T f(t +T ) = f(t) t T

3.1.3 y(t) = 2 sin(4πt)

t 2π

T = = .
2π

4π

1

2

3.1.1

y(t) = A sin(2πft)

T = = .
2π

2πf

1

f

s−1

3.1.3 y(t) = 2 sin(4πt) y(t) = sin(10πt) y(t) = 0.5 sin(16πt)

0.5s, 0.2s 0.125s 3.1.3

1.0s = 2(0.5)s = 5(.2)s = 8(.125)s
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Secondly, we will find that using just sine functions will not be enough either. This is because we can add sinusoidal functions that
do not necessarily peak at the same time. We will consider two signals that originate at different times. This is similar to when your
music teacher would make sections of the class sing a song like “Row, Row, Row your Boat” starting at slightly different times.

We can easily add shifted sine functions. In Figure  we show the functions  and 
and their sum. Note that this shifted sine function can be written as . Thus, this corresponds to a time
shift of .

Figure : Plot of the functions  and  and their sum.

So, we should account for shifted sine functions in the general sum. Of course, we would then need to determine the unknown time
shift as well as the amplitudes of the sinusoidal functions that make up the signal, . While this is one approach that some
researchers use to analyze signals, there is a more common approach. This results from another reworking of the shifted function.

We should note that the form in the lower plot of Figure 3.4 looks like a simple sinusoidal function for a reason. Let

Then,

[1] Recall the identities (11.2.5)-(11.2.6)

3.1.4 y(t) = 2 sin(4πt) y(t) = 2 sin(4πt +7π/8)

y(t) = 2 sin(4π(t +7/32))

−7/32

3.1.4 y(t) = 2 sin(4πt) y(t) = 2 sin(4πt + 7π/8)

f(t)

 Note

(t) = 2 sin(4πt),y1

(t) = 2 sin(4πt +7π/8).y2

+y1 y2 = 2 sin(4πt +7π/8) +2 sin(4πt)

= 2[sin(4πt +7π/8) +sin(4πt)]

= 4 cos sin(4πt + ).
7π

16

7π

16

sin(x +y)

cos(x +y)

= sinx cos y +siny cos x,

= cos x cos y −sinx siny.
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Consider the general shifted function

Note that  is called the phase of the sine function and  is called the phase shift. We can use the trigonometric identity
(A.17) for the sine of the sum of two angles  to obtain

We are now in a position to state our goal.

Given a signal , we would like to determine its frequency content by finding out what combinations of sines and cosines of
varying frequencies and amplitudes will sum to the given function. This is called Fourier Analysis.

This page titled 3.1: Introduction to Fourier Series is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

y(t) = A sin(2πft +ϕ). (3.1.1)

2πft +ϕ ϕ
1

y(t) = A sin(2πft +ϕ)

= A sin(ϕ) cos(2πft) +A cos(ϕ) sin(2πft). (3.1.2)

 Fourier Analysis

f(t)
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3.2: Fourier Trigonometric Series
As we have seen in the last section, we are interested in finding representations of functions in terms of sines and cosines. Given a
function  we seek a representation in the form

Notice that we have opted to drop the references to the time-frequency form of the phase. This will lead to a simpler discussion for
now and one can always make the transformation  when applying these ideas to applications.

The series representation in Equation  is called a Fourier trigonometric series. We will simply refer to this as a Fourier
series for now. The set of constants  are called the Fourier coefficients. The constant term is chosen in
this form to make later computations simpler, though some other authors choose to write the constant term as . Our goal is to
find the Fourier series representation given . Having found the Fourier series representation, we will be interested in
determining when the Fourier series converges and to what function it converges.

From our discussion in the last section, we see that The Fourier series is periodic. The periods of  and  are . Thus,
the largest period, , comes from the  terms and the Fourier series has period . This means that the series should be
able to represent functions that are periodic of period .

While this appears restrictive, we could also consider functions that are defined over one period. In Figure  we show a
function defined on . In the same figure, we show its periodic extension. These are just copies of the original function shifted
by the period and glued together. The extension can now be represented by a Fourier series and restricting the Fourier series to 

 will give a representation of the original function. Therefore, we will first consider Fourier series representations of
functions defined on this interval. Note that we could just as easily considered functions defined on  or any interval of
length . We will consider more general intervals later in the chapter.

Figure : Plot of the function  defined on  and its periodic extension.

f(x)

f(x)  + [ cosnx+ sinnx].
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an bn (3.2.1)

nx = 2π tfn

(3.2.1)
, , , n = 1, 2, …a0 an bn

a0

f(x)

cosnx sinnx 2π
n

T = 2π n = 1 2π
2π

3.2.1
[0, 2π]

[0, 2π]
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2π

3.2.1 f(t) [0, 2π]
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The Fourier series representation of  defined on , when it exists, is given by  with Fourier coefficients

These expressions for the Fourier coefficients are obtained by considering special integrations of the Fourier series. We will now
derive the  integrals in .

We begin with the computation of . Integrating the Fourier series term by term in Equation , we have

Evaluating the integral of an infinite series by integrating term by term depends on the convergence properties of the series.

We will assume that we can integrate the infinite sum term by term. Then we will need to compute

From these results we see that only one term in the integrated sum does not vanish leaving

This confirms the value for .

Next, we will find the expression for . We multiply the Fourier series  by  for some positive integer . This is like
multiplying by  etc. We are multiplying by all possible  functions for different integers  all at the same
time. We will see that this will allow us to solve for the ’s.

We find the integrated sum of the series times  is given by

Integrating term by term, the right side becomes

We have already established that , which implies that the first term vanishes.

Next we need to compute integrals of products of sines and cosines. This requires that we make use of some of the trigonometric
identities listed in Chapter 1. For quick reference, we list these here.

 Theorem : Fourier Coefficients3.2.1

f(x) [0, 2π] (3.2.1)

an

bn

= f(x) cosnxdx, n = 0, 1, 2, … ,
1

π
∫

2π

0

= f(x) sinnxdx, n = 1, 2, …
1

π
∫

2π

0
(3.2.2)

an (3.2.2)

a0 (3.2.1)

f(x)dx = dx+ [ cosnx+ sinnx]dx.∫
2π

0
∫

2π

0

a0

2
∫

2π

0
∑
n=1

∞

an bn (3.2.3)

 Note

dx∫
2π

0

a0

2

cosnxdx∫
2π

0

sinnxdx∫
2π

0

= (2π) = π ,
a0

2
a0

= = 0,[ ]
sinnx

n

2π

0

= = 0.[ ]
−cosnx

n

2π

0

(3.2.4)

 Note

f(x)dx = π .∫
2π

0
a0

a0
2

an (3.2.1) cosmx m

cos 2x, cos 5x, cosmx m

an

cosmx

f(x) cosmxdx = cosmxdx+ [ cosnx+ sinnx] cosmxdx.∫
2π

0
∫

2π

0

a0

2
∫

2π

0
∑
n=1

∞

an bn (3.2.5)

f(x) cosmxdx = cosmxdx+ [ cosnx cosmxdx+ sinnx cosmxdx] .∫
2π

0

a0

2
∫

2π

0
∑
n=1

∞

an ∫
2π

0
bn ∫

2π

0
(3.2.6)

cosmxdx = 0∫ 2π
0
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We first want to evaluate . We do this by using the product identity . We have

There is one caveat when doing such integrals. What if one of the denominators  vanishes? For this problem ,
since both  and  are positive integers. However, it is possible for . This means that the vanishing of the integral can only
happen when . So, what can we do about the  case? One way is to start from scratch with our integration. (Another
way is to compute the limit as  approaches  in our result and use L’Hopital’s Rule. Try it!)

For  we have to compute . This can also be handled using a trigonometric identity. Using the half angle
formula, , with , we find

To summarize, we have shown that

This holds true for . [Why did we include ?] When we have such a set of functions, they are said to be an
orthogonal set over the integration interval. A set of (real) functions  is said to be orthogonal on  if 

 when . Furthermore, if we also have that , these functions are called orthonormal.

The set of functions  are orthogonal on . Actually, they are orthogonal on any interval of length . We can
make them orthonormal by dividing each function by  as indicated by Equation . This is sometimes referred to
normalization of the set of functions.

The notion of orthogonality is actually a generalization of the orthogonality of vectors in finite dimensional vector spaces. The
integral  is the generalization of the dot product, and is called the scalar product of  and , which are
thought of as vectors in an infinite dimensional vector space spanned by a set of orthogonal functions. We will return to these ideas
in the next chapter.

 Useful Trigonometric Identities

sin(x±y)

cos(x±y)

xsin2

xcos2

sinx siny

cosx cosy

sinx cosy

= sinx cosy±siny cosx

= cosx cosy∓sinx siny

= (1 −cos 2x)
1

2

= (1 +cos 2x)
1

2

= (cos(x−y) −cos(x+y))
1

2

= (cos(x+y) +cos(x−y))
1

2

= (sin(x+y) +sin(x−y))
1

2

(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

cosnx cosmxdx∫ 2π
0

(3.2.12)

cosnx cosmxdx∫
2π

0
= [cos(m+n)x+cos(m−n)x]dx

1

2
∫

2π

0

=
1

2
[ + ]

sin(m+n)x

m+n

sin(m−n)x

m−n

2π

0

= 0. (3.2.14)

m±n m+n ≠ 0
m n m = n

m ≠ n m = n

n m

n = m mxdx∫ 2π
0

cos2

(3.2.10) θ = mx

mxdx∫
2π

0
cos2 = (1 +cos 2mx)dx

1

2
∫

2π

0

=
1

2
[x+ sin2mx]

1

2m

2π

0

= (2π) = π.
1

2
(3.2.15)

cosnx cosmxdx ={∫
2π

0

0,

π,

m ≠ n

m = n.
(3.2.16)

m,n = 0, 1, … m,n = 0
{ (x)}ϕn [a, b]

(x) (x)dx = 0∫ b

a ϕn ϕm n ≠ m (x)dx = 1∫ b

a ϕ2
n

{cosnx}∞
n=0

[0, 2π] 2π
π−−√ (3.2.15)

f(x)f(x)dx∫ b

a
f(x) g(x)
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Returning to the integrals in equation , we still have to evaluate . We can use the trigonometric identity
involving products of sines and cosines, . Setting  and , we find that

So,

For these integrals we also should be careful about setting . In this special case, we have the integrals

Finally, we can finish evaluating the expression in Equation . We have determined that all but one integral vanishes. In that
case, . This leaves us with

Solving for  gives

Since this is true for all , we have proven this part of the theorem. The only part left is finding the ’s This will be
left as an exercise for the reader.

We now consider examples of finding Fourier coefficients for given functions. In all of these cases we define  on .

.

Solution
We first compute the integrals for the Fourier coefficients.

The integrals for , and  are the result of orthogonality. For , the integral can be computed as follows:

(3.2.6) sinnx cosmxdx∫ 2π
0

(3.2.13) A = nx B = mx

sinnx cosmxdx∫
2π

0
= [sin(n+m)x+sin(n−m)x]dx

1

2
∫

2π

0

=
1

2
[ + ]

−cos(n+m)x

n+m

−cos(n−m)x

n−m

2π

0

= (−1 +1) +(−1 +1) = 0. (3.2.17)

sinnx cosmxdx = 0.∫
2π

0
(3.2.18)

n = m

sinmx cosmxdx = sin2mxdx = = 0.∫
2π

0

1

2
∫

2π

0

1

2
[ ]

−cos 2mx

2m

2π

0

(3.2.6)
n = m

f(x) cosmxdx = π.∫
2π

0
am

am

= f(x) cosmxdx.am
1

π
∫

2π

0

m = 1, 2, … bn

f(x) [0, 2π]

 Example 3.2.1

f(x) = 3 cos 2x, x ∈ [0, 2π]

a0

an

a2

bn

= 3 cos 2xdx = 0.
1

π
∫

2π

0

= 3 cos 2x cosnxdx = 0, n ≠ 2.
1

π
∫

2π

0

= 3 2xdx = 3,
1

π
∫

2π

0
cos2

= 3 cos 2x sinnxdx = 0, ∀n.
1

π
∫

2π

0
(3.2.19)

, , n ≠ 2a0 an bn a2
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Therefore, we have that the only nonvanishing coefficient is . So there is one term and .

Well, we should have known the answer to the last example before doing all of those integrals. If we have a function expressed
simply in terms of sums of simple sines and cosines, then it should be easy to write down the Fourier coefficients without much
work. This is seen by writing out the Fourier series,

For the last problem, . Comparing this to the expanded Fourier series, one can immediately read off the Fourier
coefficients without doing any integration. In the next example we emphasize this point.

.

Solution
We could determine the Fourier coefficients by integrating as in the last example. However, it is easier to use trigonometric
identities. We know that

There are no sine terms, so  . There is a constant term, implying . So, . There is a 
 term, corresponding to , so . That leaves  for . So, , and all other

Fourier coefficients vanish.

Solution
This example will take a little more work. We cannot bypass evaluating any integrals this time. As seen in Figure , this
function is discontinuous. So, we will break up any integration into two integrals, one over  and the other over .

a2 = 3 2xdx
1

π
∫

2π

0
cos2

= [1 +cos 4x]dx
3

2π
∫

2π

0

= = 3.
3

2π
x+

⎡

⎣

⎢⎢⎢ sin4x
1

4  
This term vanishes!

⎤

⎦

⎥⎥⎥

2π

0

(3.2.20)

= 3a2 f(x) = 3 cos 2x

f(x) ∼ + [ cosnx+ sinnx].
a0

2
∑
n=1

∞

an bn

= + cosx+ sinx+ cos 2x+ sin2x+⋯
a0

2
a1 b1 a2 b2 (3.2.21)

f(x) = 3 cos 2x

 Example 3.2.2

f(x) = x, x ∈ [0, 2π]sin2

x = (1 −cos 2x) = − cos 2x.sin2 1

2

1

2

1

2

= 0,bn n = 1, 2, … /2 = 1/2a0 = 1a0

cos 2x n = 2 = −a2
1
2

= 0an n ≠ 0, 2 = 1, = −a0 a2
1
2

 Example 3.2.3

f(x) ={
1,

−1,

0 < x < π,

π < x < 2π,

3.2.2
[0, π] [π, 2π]
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Figure : Plot of discontinuous function in Example .

Often we see expressions involving  and . This is an example showing how to
re-index series containing .

3.2.2 3.2.3

a0 = f(x)dx
1

π
∫

2π

0

= dx+ (−1)dx
1

π
∫

π

0

1

π
∫

2π

π

= (π) + (−2π+π) = 0.
1

π

1

π
(3.2.22)

an = f(x) cosnxdx
1

π
∫

2π

0

= [ cosnxdx− cosnxdx]
1

π
∫

π

0
∫

2π

π

= [ − ]
1

π
( sinnx)

1

n

π

0

( sinnx)
1

n

2π

π

= 0. (3.2.23)

bn = f(x) sinnxdx
1

π
∫

2π

0

= [ sinnxdx− sinnxdx]
1

π
∫

π

0
∫

2π

π

= [ + ]
1

π
(− cosnx)

1

n

π

0

( cosnx)
1

n

2π

π

= [− cosnπ+ + − cosnπ]
1

π

1

n

1

n

1

n

1

n

= (1 −cosnπ).
2

nπ
(3.2.24)

 Note

cosnπ = (−1)n 1 ±cosnπ = 1 ±(−1)n

cosnπ
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We have found the Fourier coefficients for this function. Before inserting them into the Fourier series , we note that 
. Therefore,

So, half of the ’s are zero. While we could write the Fourier series representation as

we could let  in order to capture the odd numbers only. The answer can be written as

Having determined the Fourier representation of a given function, we would like to know if the infinite series can be summed; i.e.,
does the series converge? Does it converge to ? We will discuss this question later in the chapter after we generalize the
Fourier series to intervals other than for .

This page titled 3.2: Fourier Trigonometric Series is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

(3.2.1)
cosnπ = (−1)n

1 −cosnπ ={
0,

2,

n even

n odd.
(3.2.25)

bn

f(x) ∼ sinnx,
4

π
∑
n=1
n odd

∞ 1

n

n = 2k−1

f(x) = .
4

π
∑
k=1

∞ sin(2k−1)x

2k−1

f(x)
x ∈ [0, 2π]
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3.3: Fourier Series Over Other Intervals
In many applications we are interested in determining Fourier series representations of functions defined on intervals other than 

. In this section we will determine the form of the series expansion and the Fourier coefficients in these cases.

The most general type of interval is given as . However, this often is too general. More common intervals are of the form 
 or . The simplest generalization is to the interval . Such intervals arise often in applications. For

example, for the problem of a one dimensional string of length  we set up the axes with the left end at  and the right end at 
. Similarly for the temperature distribution along a one dimensional rod of length  we set the interval to . Such

problems naturally lead to the study of Fourier series on intervals of length . We will see later that symmetric intervals, ,
are also useful.

Given an interval , we could apply a transformation to an interval of length  by simply rescaling the interval. Then we
could apply this transformation to the Fourier series representation to obtain an equivalent one useful for functions defined on 

.

We define  and . A linear transformation relating these intervals is simply  as shown in Figure .
So,  maps to  and  maps to . Furthermore, this transformation maps  to a new function 

, which is defined on . We will determine the Fourier series representation of this function using the
representation for  from the last section.

Figure : A sketch of the transformation between intervals  and .

Recall the form of the Fourier representation for  in Equation (3.2.1):

Inserting the transformation relating  and , we have

This gives the form of the series expansion for  with . But, we still need to determine the Fourier coefficients.

Recall, that

We need to make a substitution in the integral of . We also will need to transform the differential, . Thus, the
resulting form for the Fourier coefficients is

Similarly, we find that

We note first that when  we get back the series representation that we first studied. Also, the period of  is ,
which means that the representation for  has a period of  corresponding to .

[0, 2π]

[a, b]

[−π, π], [0,L], [−L/2,L/2] [0,L]

L x = 0

x = L L x ∈ [0, 2π]

L [−a, a]

[0,L] 2π

[0,L]

x ∈ [0, 2π] t ∈ [0,L] x = 2πt
L

3.3.1

t = 0 x = 0 t = L x = 2π f(x)

g(t) = f(x(t)) [0,L]

f(x)

3.3.1 x ∈ [0, 2π] t ∈ [0,L]

f(x)

f(x) ∼ + [ cosnx+ sinnx].
a0

2
∑
n=1

∞

an bn (3.3.1)

x t

g(t) ∼ + [ cos + sin ] .
a0

2
∑
n=1

∞

an
2nπt

L
bn

2nπt

L
(3.3.2)

g(t) t ∈ [0,L]

= f(x) cosnxdx.an
1

π
∫

2π

0

x = 2πt
L

dx = dt2π
L

= g(t) cos dt.an
2

L
∫

L

0

2nπt

L
(3.3.3)

= g(t) sin dt.bn
2

L
∫

L

0

2nπt

L
(3.3.4)

L = 2π cos 2nπt
L

L/n

g(t) L n = 1
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At the end of this section we present the derivation of the Fourier series representation for a general interval for the interested
reader. In Table  we summarize some commonly used Fourier series representations.

Table : Special Fourier Series Representations on Different Intervals
Fourier Series on 

Fourier Series on 

Fourier Series on 

At this point we need to remind the reader about the integration of even and odd functions on symmetric intervals.

We first recall that  is an even function if  for all . One can recognize even functions as they are symmetric
with respect to the -axis as shown in Figure .

3.3.1

3.3.1

[0,L]

f(x) ∼ + [ cos + sin ] .
a0

2
∑
n=1

∞

an
2nπx

L
bn

2nπx

L
(3.3.5)

an

bn

= f(x)cos dx. n = 0,1,2,…,
2

L
∫

L

0

2nπx

L

= f(x)sin dx. n = 1,2,….
2

L
∫

L

0

2nπx

L
(3.3.6)

[− , ]L
2

L
2

f(x) ∼ + [ cos + sin ] .
a0

2
∑
n=1

∞

an
2nπx

L
bn

2nπx

L
(3.3.7)

an

bn

= f(x)cos dx. n = 0,1,2,…,
2

L
∫

L

2

− L

2

2nπx

L

= f(x)sin dx. n = 1,2,….
2

L
∫

L

2

− L

2

2nπx

L
(3.3.8)

[−π,π]

f(x) ∼ + [ cosnx + sinnx].
a0

2
∑
n=1

∞

an bn (3.3.9)

an

bn

= f(x)cosnxdx. n = 0,1,2,…,
1

π
∫

π

−π

= f(x)sinnxdx. n = 1,2,….
1

π
∫

π

−π

(3.3.10)

f(x) f(−x) = f(x) x

y 3.3.2
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Figure : Area under an even function on a symmetric interval, .

If one integrates an even function over a symmetric interval, then one has that

One can prove this by splitting off the integration over negative values of , using the substitution , and employing the
evenness of . Thus,

This can be visually verified by looking at Figure .

A similar computation could be done for odd functions.  is an odd function if  for all . The graphs of such
functions are symmetric with respect to the origin as shown in Figure . If one integrates an odd function over a symmetric
interval, then one has that

3.3.2 [−a,a]

f(x)dx = 2 f(x)dx.∫
a

−a

∫
a

0

(3.3.11)

x x = −y

f(x)

f(x)dx∫
a

−a

= f(x)dx+ f(x)dx∫
0

−a

∫
a

0

= − f(−y)dy+ f(x)dx∫
0

a

∫
a

0

= f(y)dy+ f(x)dx∫
a

0
∫

a

0

= 2 f(x)dx.∫
a

0

(3.3.12)

3.3.2

f(x) f(−x) = −f(x) x

3.3.3

f(x)dx = 0.∫
a

−a

(3.3.13)
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Figure : Area under an odd function on a symmetric interval, .

Let  on . We compute the coefficients, beginning as usual with . We have, using the fact that  is an even
function,

We continue with the computation of the general Fourier coefficients for  on . We have

Here we have made use of the fact that  is an even function.

In order to compute the resulting integral, we need to use integration by parts,

by letting  and . Thus,  and .

Continuing with the computation, we have

3.3.3 [−a,a]

 Example 3.3.1

f(x) = |x| [−π, π] a0 |x|

a0 = |x|dx
1

π
∫

π

−π

= xdx = π
2

π
∫

π

0

(3.3.14)

f(x) = |x| [−π, π]

= |x| cosnxdx = x cosnxdx.an
1

π
∫

π

−π

2

π
∫

π

0

(3.3.15)

|x| cosnx

udv= − vdu,∫
b

a

uv|
b
a ∫

b

a

u = x dv= cosnxdx du = dx v= ∫ dv= sinnx1
n
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Here we have used the fact that  for any integer . This leads to a factor . This factor can be
simplified as

So,  for  even and  for  odd.

Computing the ’s is simpler. We note that we have to integrate  from  to . The integrand is an odd
function and this is a symmetric interval. So, the result is that  for all .

Putting this all together, the Fourier series representation of  on  is given as

While this is correct, we can rewrite the sum over only odd n by reindexing. We let  for . Then we
only get the odd integers. The series can then be written as

Throughout our discussion we have referred to such results as Fourier representations. We have not looked at the convergence of
these series. Here is an example of an infinite series of functions. What does this series sum to? We show in Figure  the first
few partial sums. They appear to be converging to  fairly quickly.

Figure : Plot of the first partial sums of the Fourier series representation for .

an = x cosnxdx.
2

π
∫

π

0

= − sinnxdx]
2

π
[ x sinnx

1

n

∣
∣
∣
π

0

1

n
∫

π

0

= −
2

nπ
[− cosnx]

1

n

π

0

= − (1 −(−1 ).
2

πn2
)n (3.3.16)

cosnπ = (−1)n n (1 −(−1 ))n

1 −(−1 ={ .)n
2,

0,

n odd

n even
(3.3.17)

= 0an n = −an
4

πn2 n

bn |x| sinnx x = −π π

= 0bn n

f(x) = |x| [−π, π]

f(x) ∼ − .
π

2

4

π
∑
n=1
n odd

∞ cosnx

n2
(3.3.18)

n = 2k−1 k = 1, 2, 3, …

f(x) ∼ − .
π

2

4

π
∑
k=1

∞ cos(2k−1)x

(2k−1)2
(3.3.19)

3.3.4

f(x) = |x|

3.3.4 f(x) = |x|
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Even though  was defined on  we can still evaluate the Fourier series at values of  outside this interval. In Figure 
, we see that the representation agrees with  on the interval . Outside this interval we have a periodic extension of 
 with period .

Figure : Plot of the first 10 terms of the Fourier series representation for  on the interval .

Another example is the Fourier series representation of  on  as left for Problem 7. This is determined to be

As seen in Figure  we again obtain the periodic extension of the function. In this case we needed many more terms. Also, the
vertical parts of the first plot are nonexistent. In the second plot we only plot the points and not the typical connected points that
most software packages plot as the default style.

f(x) [−π, π] x

3.3.5 f(x) [−π, π]

f(x) 2π

3.3.5 f(x) = |x| [−2π, 4π]

f(x) = x [−π, π]

f(x) ∼ 2 sinnx.∑
n=1

∞ (−1)n+1

n
(3.3.20)

3.3.6
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Figure : Plot of the first  terms and  terms of the Fourier series representation for  on the interval .

It is interesting to note that one can use Fourier series to obtain sums of some infinite series. For example, in the last example
we found that

Now, what if we chose ? Then, we have

This gives a well known expression for :

Fourier Series on 

A Fourier series representation is also possible for a general interval, . As before, we just need to transform this interval to
[0, 2π]. Let

Inserting this into the Fourier series (3.2.1) representation for  we obtain

Well, this expansion is ugly. It is not like the last example, where the transformation was straightforward. If one were to apply the
theory to applications, it might seem to make sense to just shift the data so that  and be done with any complicated
expressions. However, some students enjoy the challenge of developing such generalized expressions. So, let’s see what is
involved.

3.3.6 10 200 f(x) = x [−2π, 4π]

 Example 3.3.2

x ∼ 2 sinnx.∑
n=1

∞ (−1)n+1

n

x = π

2

= 2 sin = 2 [1 − + − +⋯] .
π

2
∑
n=1

∞ (−1)n+1

n

nπ

2

1

3

1

5

1

7

π

π = 4 [1 − + − +⋯] .
1

3

1

5

1

7

[a,b]

t ∈ [a, b]

x = 2π .
t−a

b−a

f(x)

g(t) ∼ + [ cos + sin ] .
a0

2
∑
n=1

∞

an
2nπ(t−a)

b−a
bn

2nπ(t−a)

b−a
(3.3.21)

a = 0
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First, we apply the addition identities for trigonometric functions and rearrange the terms.

Defining  and

we arrive at the more desirable form for the Fourier series representation of a function defined on the interval .

We next need to find expressions for the Fourier coefficients. We insert the known expressions for  and  and rearrange. First,
we note that under the transformation  we have

and

Then, inserting these integrals in , combining integrals and making use of the addition formula for the cosine of the sum of two
angles, we obtain

A similar computation gives

Summarizing, we have shown that:

g(t) ∼ + [ cos + sin ]
a0

2
∑
n=1

∞

an
2nπ(t−a)

b−a
bn

2nπ(t−a)

b−a

= + [ (cos cos +sin sin )
a0

2
∑
n=1

∞

an
2nπt

b−a

2nπa

b−a

2nπt

b−a

2nπa

b−a

+ (sin cos −cos sin )]bn
2nπt

b−a

2nπa

b−a

2nπt

b−a

2nπa

b−a

= + [cos ( cos − sin )
a0

2
∑
n=1

∞ 2nπt

b−a
an

2nπa

b−a
bn

2nπa

b−a

+sin ( sin + cos )] .
2nπt

b−a
an

2nπa

b−a
bn

2nπa

b−a
(3.3.22)

=A0 a0

An

Bn

≡ cos + sinan
2nπa

b−a
bn

2nπa

b−a

≡ sin + cos ,an
2nπa

b−a
bn

2nπa

b−a
(3.3.23)

[a, b]

g(t) ∼ + [ cos + sin ] .
A0

2
∑
n=1

∞

An

2nπt

b−a
Bn

2nπt

b−a
(3.3.24)

an bn

x = 2π
t−a

b−a

an = f(x) cosnxdx
1

π
∫

2π

0

= g(t) cos dt,
2

b−a
∫

b

a

2nπ(t−a)

b−a
(3.3.25)

bn = f(x) cosnxdx
1

π
∫

2π

0

= g(t) sin dt.
2

b−a
∫

b

a

2nπ(t−a)

b−a
(3.3.26)

An

An ≡ cos − sinan
2nπa

b−a
bn

2nπa

b−a

= g(t)[cos cos −sin sin ]dt
2

b−a
∫

b

a

2nπ(t−a)

b−a

2nπa

b−a

2nπ(t−a)

b−a

2nπa

b−a

= g(t) cos dt.
2

b−a
∫

b

a

2nπt

b−a
(3.3.27)

= g(t) sin dt.Bn

2

b−a
∫

b

a

2nπt

b−a
(3.3.28)
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The Fourier series representation of  defined on  when it exists, is given by

with fourier coefficients

This page titled 3.3: Fourier Series Over Other Intervals is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

 Theorem 3.3.1

f(x) [a, b]

f(x) ∼ + [ cos + sin ] .
a0

2
∑
n=1

∞

an
2nπx

b−a
bn

2nπx

b−a
(3.3.29)

an

bn

= f(x) cos dx. n = 0, 1, 2, … ,
2

b−a
∫

b

a

2nπx

b−a

= f(x) sin dx. n = 1, 2, … .
2

b−a
∫

b

a

2nπx

b−a
(3.3.30)
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3.4: Sine and Cosine Series
In the last two examples  and  on  ) we have seen Fourier series representations that contain only sine
or cosine terms. As we know, the sine functions are odd functions and thus sum to odd functions. Similarly, cosine functions sum to
even functions. Such occurrences happen often in practice. Fourier representations involving just sines are called sine series and
those involving just cosines (and the constant term) are called cosine series.

Another interesting result, based upon these examples, is that the original functions,  and  agree on the interval . Note
from Figures 3.3.4-3.3.6 that their Fourier series representations do as well. Thus, more than one series can be used to represent
functions defined on finite intervals. All they need to do is to agree with the function over that particular interval. Sometimes one of
these series is more useful because it has additional properties needed in the given application.

We have made the following observations from the previous examples:

1. There are several trigonometric series representations for a function defined on a finite interval.
2. Odd functions on a symmetric interval are represented by sine series and even functions on a symmetric interval are represented

by cosine series.

These two observations are related and are the subject of this section. We begin by defining a function  on interval . We
have seen that the Fourier series representation of this function appears to converge to a periodic extension of the function.

In Figure  we show a function defined on . To the right is its periodic extension to the whole real axis. This
representation has a period of . The bottom left plot is obtained by first reflecting  about the  axis to make it an even
function and then graphing the periodic extension of this new function. Its period will be . Finally, in the last plot we flip the
function about each axis and graph the periodic extension of the new odd function. It will also have a period of .

Figure : This is a sketch of a function and its various extensions. The original function  is defined on  and graphed
in the upper left corner. To its right is the periodic extension, obtained by adding replicas. The two lower plots are obtained by first
making the original function even or odd and then creating the periodic extensions of the new function.

In general, we obtain three different periodic representations. In order to distinguish these we will refer to them simply as the
periodic, even and odd extensions. Now, starting with  defined on , we would like to determine the Fourier series
representations leading to these extensions. [For easy reference, the results are summarized in Table ]

We have already seen from Table 3.3.1 that the periodic extension of , defined on , is obtained through the Fourier series
representation

(f(x) = |x| f(x) = x [−π, π]

|x| x [0, π]

f(x) [0,L]

3.4.1 [0, 1]

L = 1 f y

2L = 2

2L = 2

3.4.1 f(x) [0, 1]

f(x) [0,L]

3.4.1

f(x) [0,L]
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where

Given  defined on , the even periodic extension is obtained by simply computing the Fourier series representation for the
even function

Since  is an even function on a symmetric interval , we expect that the resulting Fourier series will not contain sine
terms. Therefore, the series expansion will be given by [Use the general case in (3.3.29) with  and  :

with Fourier coefficients

However, we can simplify this by noting that the integrand is even and the interval of integration can be replaced by . On this
interval  . So, we have the Cosine Series Representation of  for  is given as

where

Table : Fourier Cosine and Sine Series Representations on 

Fourier Series on 

Fourier Cosine Series on 

where

f(x) ∼ + [ cos + sin ] ,
a0

2
∑
n=1

∞

an
2nπx

L
bn

2nπx

L
(3.4.1)

= f(x) cos dx. n = 0, 1, 2, … ,an
2

L
∫

L

0

2nπx

L

= f(x) sin dx. n = 1, 2, …bn
2

L
∫

L

0

2nπx

L
(3.4.2)

f(x) [0,L]

(x) ≡ {fe
f(x),

f(−x)

0 < x < L,

−L < x < 0.
(3.4.3)

(x)fe [−L,L]

a = −L b = L. ]

(x) ∼ + cos .fe
a0

2
∑
n=1

∞

an
nπx

L
(3.4.4)

= (x) cos dx. n = 0, 1, 2, … .an
1

L
∫

L

−L

fe
nπx

L
(3.4.5)

[0,L]

(x) =fe f(x) f(x) x ∈ [0,L]

f(x) ∼ + cos .
a0

2
∑
n=1

∞

an
nπx

L
(3.4.6)

= f(x) cos dx. n = 0, 1, 2, …an
2

L
∫

L

0

nπx

L
(3.4.7)

3.4.1 [0,L]

[0,L]

f(x) ∼ + [ cos + sin ]
a0

2
∑
n=1

∞

an
2nπx

L
bn

2nπx

L
(3.4.8)

= f(x)cos dx. n = 0,1,2,…,an
2

L
∫

L

0

2nπx

L

= f(x)sin dx. n = 1,2,…bn
2

L
∫

L

0

2nπx

L
(3.4.9)

[0,L]

f(x) ∼ /2 + cos .a0 ∑
n=1

∞

an
nπx

L
(3.4.10)

= f(x)cos dx. n = 0,1,2,…an
2

L
∫

L

0

nπx

L
(3.4.11)
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Fourier Series on 

Fourier Sine Series on 

where

Similarly, given  defined on , the odd periodic extension is obtained by simply computing the Fourier series
representation for the odd function

The resulting series expansion leads to defining the Sine Series Representation of  for  as

where

In Figure  we actually provided plots of the various extensions of the function  for . Let’s determine
the representations of the periodic, even and odd extensions of this function.

For a change, we will use a CAS (Computer Algebra System) package to do the integrals. In this case we can use Maple. A
general code for doing this for the periodic extension is shown in Table .

Using the code in Table , we have that , and . Thus, the resulting series is given as

In Figure  we see the sum of the first 50 terms of this series. Generally, we see that the series seems to be converging to
the periodic extension of . There appear to be some problems with the convergence around integer values of . We will later
see that this is because of the discontinuities in the periodic extension and the resulting overshoot is referred to as the Gibbs
phenomenon which is discussed in the last section of this chapter.

[0,L]

[0,L]

f(x) ∼ sin∑
n=1

∞

bn
nπx

L
(3.4.12)

= f(x)sin dx. n = 1,2,…bn
2

L
∫

L

0

nπx

L
(3.4.13)

f(x) [0,L]

(x) ≡ {fo
f(x),

−f(−x)

0 < x < L,

−L < x < 0.
(3.4.14)

f(x) x ∈ [0,L]

f(x) ∼ sin .∑
n=1

∞

bn
nπx

L
(3.4.15)

= f(x) sin dx. n = 1, 2, … .bn
2

L
∫

L

0

nπx

L
(3.4.16)

 Example 3.4.1

3.4.1 f(x) = x2 x ∈ [0, 1]

3.4.2

 Example : Periodic Extension - Trigonometric Fourier Series3.4.2

3.4.2 = , =a0
2
3
an

1
n2π2

= −bn
1
nπ

f(x) ∼ + [ cos 2nπx− sin2nπx] .
1

3
∑
n=1

∞
1

n2π2

1

nπ

3.4.2

f x
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Figure : The periodic extension of  on .

Table : Maple code for computing Fourier coefficients and plotting partial sums of the Fourier series.

In this case we compute  and . Therefore, we have

In Figure  we see the sum of the first 50 terms of this series. In this case the convergence seems to be much better than in
the periodic extension case. We also see that it is converging to the even extension.

> restart: 

> L:=1: 

> f:=x^2: 

> assume(n,integer): 

>a0:=2/L*int(f,x=0..L); 

                              a0 := 2/3 

> an:=2/L*int(f*cos(2*n*Pi*x/L),x=0..L); 

                                     1 

                            an := --------   

                                   2    2 

> bn:=2/L*int(f*sin(2*n*Pi*x/L),x=0..L); 

                                     1   

                            bn := --------   

                                   n- Pi       

> F:=a0/2+sum((1/(k*Pi)^2)*cos(2*k*Pi*x/L) 

     -1/(k*Pi)*sin(2*k*Pi*x/L),k=1..50): 

> plot(F,x=-1..3,title=‘Periodic Extension‘, 

      titlefont=[TIMES,ROMAN,14],font=[TIMES,ROMAN,14]);                                         

3.4.2 f(x) = x2 [0, 1]

3.4.2

 Example : Even Periodic Extension - Cosine Series3.4.3

=a0
2
3

=an
4(−1)

n

n2π2

f(x) ∼ + cosnπx
1

3

4

π2
∑
n=1

∞ (−1)n

n2

3.4.3
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Figure : The even periodic extension of  on 

Finally, we look at the sine series for this function. We find that

Therefore,

Once again we see discontinuities in the extension as seen in Figure . However, we have verified that our sine series
appears to be converging to the odd extension as we first sketched in Figure .

3.4.3 f(x) = x2 [0, 1]

 Example : Odd Periodic Extension - Sine Series3.4.4

= − ( (−1 −2(−1 +2) . bn
2

n3π3
n2π2 )n )n

f(x) ∼ − ( (−1 −2(−1 +2) sinnπx.
2

π3
∑
n=1

∞ 1

n3
n2π2 )n )n

3.4.4

3.4.1
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Figure : The odd periodic extension of  on 
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3.4.4 f(x) = x2 [0, 1]
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3.5: Solution of the Heat Equation
We started this chapter seeking solutions of initial-boundary value problems involving the heat equation and the wave equation. In
particular, we found the general solution for the problem of heat flow in a one dimensional rod of length  with fixed zero
temperature ends. The problem was given by

We found the solution using separation of variables. This resulted in a sum over various product solutions:

where

This equation satisfies the boundary conditions. However, we had only gotten to state initial condition using this solution. Namely,

We were left with having to determine the constants . Once we know them, we have the solution.

Now we can get the Fourier coefficients when we are given the initial condition, . They are given by

We consider a couple of examples with different initial conditions.

Consider the solution of the heat equation with  and .

In this case the solution takes the form

However, the initial condition takes the form of the first term in the expansion; i.e., the  term. So, we need not carry out
the integral because we can immediately write  and . Therefore, the solution consists of just one
term,

In Figure  we see that how this solution behaves for  and .

L

 PDE 

 IC 

 BC 

= k ,ut uxx

u(x, 0) = f(x),

u(0, t) = 0,

u(L, t) = 0,

0 < t, 0 ≤ x ≤ L,

0 < x < L,

t > 0,

t > 0.

(3.5.1)

u(x, t) = sin ,∑
n=1

∞

bne
k tλn

nπx

L

= − .λn ( )
nπ

L

2

f(x) = u(x, 0) = sin .∑
n=1

∞

bn
nπx

L

bn

f(x)

= f(x) sin dx, n = 1, 2, … .bn
2

L
∫

L

0

nπx

L

 Example 3.5.1

f(x) = sinx L = π

u(x, t) = sinnx.∑
n=1

∞

bne
k tλn

n = 1

= 1b1 = 0,n = 2, 3, …bn

u(x, t) = sinx.e−kt

3.5.1 k = 1 t ∈ [0, 1]
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Figure : The evolution of the initial condition  for  and .

Consider solutions of the heat equation with  and .

This example requires a bit more work. The solution takes the form

where

This integral is easily computed using integration by parts

So, we have that the solution can be written as

3.5.1 f(x) = sin x L = π k = 1

 Example 3.5.2

f(x) = x(1 −x) L = 1

u(x, t) = sinnπx,∑
n=1

∞

bne
− ktn2π2

= 2 f(x) sinnπxdx.bn ∫
1

0

bn = 2 x(1 −x) sinnπxdx∫
1

0

= + (1 −2x) cosnπxdx[2x(1 −x)(− cosnπx)]
1

nπ

1

0

2

nπ
∫

1

0

= − {[(1 −2x) sinnπx +2 sinnπxdx}
2

n2π2
]10 ∫

1

0

= [cosnπx
4

n3π3
]10

= (cosnπ−1)
4

n3π3

= {
0,

− 8
n3π3

n even

n odd
(3.5.2)

u(x, t) = sin(2ℓ −1)πx.
8

π3
∑
ℓ=1

∞ 1

(2ℓ −1)3
e−(2ℓ−1 kt)

2
π2
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In Figure  we see that how this solution behaves for  and . Twenty terms were used. We see that this
solution diffuses much faster than in the last example. Most of the terms damp out quickly as the solution asymptotically
approaches the first term.

Figure : The evolution of the initial condition  for  and .

This page titled 3.5: Solution of the Heat Equation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
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3.6: Finite Length Strings
We now return to the physical example of wave propagation in a string. We found that the general solution can be represented as a
sum over product solutions. We will restrict our discussion to the special case that the initial velocity is zero and the original profile
is given by . The solution is then

satisfying

We have seen that the Fourier sine series coefficients are given by

We can rewrite this solution in a more compact form. First, we define the wave numbers,

and the angular frequencies,

Then, the product solutions take the form

Using trigonometric identities, these products can be written as

Inserting this expression in the solution, we have

Since , we can put this into a more suggestive form:

We see that each sum is simply the sine series for  but evaluated at either  or . Thus, the solution takes the form

If , then we have . So, the solution satisfies the initial condition. At , the sum has a
term .

Recall from your mathematics classes that this is simply a shifted version of . Namely, it is shifted to the right. For general
times, the function is shifted by  to the right. For larger values of , this shift is further to the right. The function (wave) shifts to
the right with velocity . Similarly,  is a wave traveling to the left with velocity .

Thus, the waves on the string consist of waves traveling to the right and to the left. However, the story does not stop here. We have
a problem when needing to shift  across the boundaries. The original problem only defines  on . If we are not
careful, we would think that the function leaves the interval leaving nothing left inside. However, we have to recall that our sine

u(x, 0) = f(x)

u(x, t) = sin cos∑
n=1

∞

An

nπx

L

nπct

L
(3.6.1)

f(x) = sin .∑
n=1

∞

An

nπx

L
(3.6.2)

= f(x) sin dx.An

2

L
∫

L

0

nπx

L
(3.6.3)

= , n = 1, 2, … ,kn
nπ

L

= c = .ωn kn
nπc

L

sin x cos tkn ωn

sin x cos t = [sin( x+ t) +sin( x− t)] .kn ωn

1

2
kn ωn kn ωn

u(x, t) = [sin( x+ t) +sin( x− t)] .
1

2
∑
n=1

∞

An kn ωn kn ωn (3.6.4)

= cωn kn

u(x, t) = [ sin (x+ct) + sin (x−ct)] .
1

2
∑
n=1

∞

An kn ∑
n=1

∞

An kn (3.6.5)

f(x) x+ct x−ct

u(x, t) = [f(x+ct) +f(x−ct)].
1

2
(3.6.6)

t = 0 u(x, 0) = [f(x) +f(x)] = f(x)1
2

t = 1

f(x−c)

f(x)

ct t

c f(x+ct) −c

f(x) f(x) [0,L]
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series representation for  has a period of . So, before we apply this shifting, we need to account for its periodicity. In fact,
being a sine series, we really have the odd periodic extension of  being shifted. The details of such analysis would take us too
far from our current goal. However, we can illustrate this with a few figures.

We begin by plucking a string of length . This can be represented by the function

where the string is pulled up one unit at . This is shown in Figure .

Figure : The initial profile for a string of length one plucked at .

Next, we create an odd function by extending the function to a period of . This is shown in Figure .

Figure : Odd extension about the right end of a plucked string.

Finally, we construct the periodic extension of this to the entire line. In Figure  we show in the lower part of the figure copies
of the periodic extension, one moving to the right and the other moving to the left. (Actually, the copies are .) The top
plot is the sum of these solutions. The physical string lies in the interval . Of course, this is better seen when the solution is
animated.

f(x) 2L

f(x)

L

f(x) ={
x

a

L−x

L−a

0 ≤ x ≤ a

a ≤ x ≤ L
(3.6.7)

x = a 3.6.1

3.6.1 x = a

2L 3.6.2

3.6.2

3.6.3

f(x±ct)1
2

[0, 1]
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Figure : Summing the odd periodic extensions. The lower plot shows copies of the periodic extension, one moving to the right
and the other moving to the left. The upper plot is the sum.

The time evolution for this plucked string is shown for several times in Figure . This results in a wave that appears to reflect
from the ends as time increases.

Figure : This Figure shows the plucked string at six successive times.

The relation between the angular frequency and the wave number,  , is called a dispersion relation. In this case  depends on
 linearly. If one knows the dispersion relation, then one can find the wave speed as . In this case, all of the harmonics travel

at the same speed. In cases where they do not, we have nonlinear dispersion, which we will discuss later.

This page titled 3.6: Finite Length Strings is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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3.7: The Gibbs Phenomenon
We have seen from the Gibbs Phenomenon when there is a jump discontinuity in the periodic extension of a function, whether the
function originally had a discontinuity or developed one due to a mismatch in the values of the endpoints. This can be seen in
Figures 3.3.6, 3.4.2 and 3.4.4. The Fourier series has a difficult time converging at the point of discontinuity and these graphs of the
Fourier series show a distinct overshoot which does not go away. This is called the Gibbs phenomenon  and the amount of
overshoot can be computed.

In one of our first examples, Example 3.2.3, we found the Fourier series representation of the piecewise defined function

to be

In Figure  we display the sum of the first ten terms. Note the wiggles, overshoots and under shoots. These are seen more when
we plot the representation for , as shown in Figure .

Figure : The Fourier series representation of a step function on  for .

1

f(x) ={
1,

−1,

0 < x < π,

π < x < 2π,
(3.7.1)

f(x) ∼
4

π
∑
k=1

∞ sin(2k−1)x

2k−1
(3.7.2)

3.7.1

x ∈ [−3π, 3π] 3.7.2

3.7.1 [−π,π] N = 10
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Figure : The Fourier series representation of a step function on  for  plotted on  displaying the
periodicity.

We note that the overshoots and undershoots occur at discontinuities in the periodic extension of . These occur whenever 
has a discontinuity or if the values of  at the endpoints of the domain do not agree.

Figure : The Fourier series representation of a step function on  for .

One might expect that we only need to add more terms. In Figure  we show the sum for twenty terms. Note the sum appears to
converge better for points far from the discontinuities. But, the overshoots and undershoots are still present. In Figures  and 

 show magnified plots of the overshoot at  for  and , respectively. We see that the overshoot persists.

3.7.2 [−π,π] N = 10 [−3π, 3π]

f(x) f(x)

f(x)

3.7.3 [−π,π] N = 20

3.7.3

3.7.4

3.7.5 x = 0 N = 100 N = 500
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The peak is at about the same height, but its location seems to be getting closer to the origin. We will show how one can estimate
the size of the overshoot.

Figure : The Fourier series representation of a step function on  for .

Figure : The Fourier series representation of a step function on  for .

We can study the Gibbs phenomenon by looking at the partial sums of general Fourier trigonometric series for functions 
defined on the interval . Writing out the partial sums, inserting the Fourier coefficients and rearranging, we have

3.7.4 [−π,π] N = 100

3.7.5 [−π,π] N = 500

f(x)

[−L,L]
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We have defined

which is called the -th Dirichlet kernel.

We now prove

The -th Dirichlet kernel is given by

Proof

Let  and multiply  by  to obtain:

Thus,

If , then

(x) =SN

=

=

=

≡

+ [ cos + sin ]a0 ∑
n=1

N

an
nπx

L
bn

nπx

L

f(y)dy+ [( f(y) cos dy) cos
1

2L
∫

L

−L

∑
n=1

N
1

L
∫

L

−L

nπy

L

nπx

L

+( f(y) sin dy.) sin ]
1

L
∫

L

−L

nπy

L

nπx

L

{
1

L
∫

L

−L

1

2

+ (cos cos +sin sin )} f(y)dy∑
n=1

N nπy

L

nπx

L

nπy

L

nπx

L

{ + cos } f(y)dy
1

L
∫

L

−L

1

2
∑
n=1

N nπ(y−x)

L

(y−x)f(y)dy
1

L
∫

L

−L

DN

(x) = + cos ,DN

1

2
∑
n=1

N
nπx

L

N

 Lemma 3.7.1

N

(x) =DN

⎧

⎩
⎨
⎪

⎪

,
sin((N+ ) )1

2

πx

L

2 sin
πx

2L

N + ,1
2

sin ≠ 0,πx

2L

sin = 0.πx

2L

θ = πx

L
(x)DN 2 sin θ

2

2 sin (x) =
θ

2
DN

=

=

=

2 sin [ +cosθ+⋯ +cosNθ]
θ

2

1

2

sin +2 cosθ sin +2 cos 2θ sin +⋯ +2 cosNθ sin
θ

2

θ

2

θ

2

θ

2

sin +(sin −sin )+(sin −sin )+⋯
θ

2

3θ

2

θ

2

5θ

2

3θ

2

+[sin(N + )θ−sin(N − )θ]
1

2

1

2

sin(N + )θ.
1

2
(3.7.3)

2 sin (x) = sin(N + )θ.
θ

2
DN

1

2

sin ≠ 0θ

2
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If , then one needs to apply L’Hospital’s Rule as  :

We further note that  is periodic with period  and is an even function.

So far, we have found that the  th partial sum is given by

Making the substitution , we have

In the second integral we have made use of the fact that  and  are periodic with period  and shifted the interval back
to .

We now write the integral as the sum of two integrals over positive and negative values of  and use the fact that  is an even
function. Then,

We can use this result to study the Gibbs phenomenon whenever it occurs. In particular, we will only concentrate on the earlier
example. For this case, we have

for

Also, one can show that

Thus, we have

(x) = , θ = .DN

sin(N + )θ1
2

2 sin θ

2

πx

L

sin = 0θ

2
θ → 2mπ

lim
θ→2mπ

sin(N + )θ1
2

2 sin θ
2

= lim
θ→2mπ

(N + ) cos(N + )θ1
2

1
2

cos θ
2

=
(N + ) cos(2mπN +mπ)1

2

cosmπ

=
(N + ) (cos 2mπN cosmπ−sin2mπN sinmπ)1

2

cosmπ

= N +
1

2
(3.7.4)

(x)DN 2L

N

(x) = (y−x)f(y)dy.SN

1

L
∫

L

−L

DN (3.7.5)

ξ = y−x

(x)SN = (ξ)f(ξ+x)dξ
1

L
∫

L−x

−L−x

DN

= (ξ)f(ξ+x)dξ.
1

L
∫

L

−L

DN (3.7.6)

f(x) (x)DN 2L

[−L,L]

ξ (x)DN

(x)SN = (ξ)f(ξ+x)dξ+ (ξ)f(ξ+x)dξ
1

L
∫

0

−L

DN

1

L
∫

L

0

DN

= [f(x−ξ) +f(ξ+x)] (ξ)dξ.
1

L
∫

L

0

DN (3.7.7)

(x) = [f(x−ξ) +f(ξ+x)] (ξ)dSN

1

π
∫

π

0

DN ξ
~

(3.7.8)

(x) = + cosnx.DN

1

2
∑
n=1

N

f(x−ξ) +f(ξ+x) =

⎧

⎩
⎨
⎪

⎪

2,

0,

−2,

0 ≤ ξ < x,

x ≤ ξ < π−x,

π−x ≤ ξ < π.
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Here we made the substitution  in the second integral.

The Dirichlet kernel for  is given by

For  large, we have , and for small , we have . So, under these assumptions,

Therefore,

If we want to determine the locations of the minima and maxima, where the undershoot and overshoot occur, then we apply the
first derivative test for extrema to . Thus,

The extrema occur for . One can show that there is a maximum at  and a minimum for 
. The value for the overshoot can be computed as

Note that this value is independent of  and is given in terms of the sine integral,

Footnotes
[1] The Gibbs phenomenon was named after Josiah Willard Gibbs (1839-1903) even though it was discovered earlier by the
Englishman Henry Wilbraham (  1883 ). Wilbraham published a soon forgotten paper about the effect in 1848 . In 1889
Albert Abraham Michelson (  1931), an American physicist,observed an overshoot in his mechanical graphing machine.
Shortly afterwards J. Willard Gibbs published papers describing this phenomenon, which was later to be called the Gibbs
phenomena. Gibbs was a mathematical physicist and chemist and is considered the father of physical chemistry.

This page titled 3.7: The Gibbs Phenomenon is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

(x)SN = (ξ)dξ− (ξ)dξ
2

π
∫

x

0

DN

2

π
∫

π

π−x

DN

= (z)dz+ (π−z)dz.
2

π
∫

x

0

DN

2

π
∫

x

0

DN (3.7.9)

z = π−ξ

L = π

(x) = .DN

sin(N + )x1
2

2 sin x

2

N N + ≈ N1
2

x sin ≈x
2

x
2

(x) ≈DN

sinNx

x

(x) → dξ  for large N ,  and small x.SN

2

π
∫

x

0

sinNξ

ξ

(x)SN

(x) = = 0.
d

dx
SN

2

π

sinNx

x

Nx = mπ,m = ±1, ±2, … x = π/N

x = 2π/N

(π/N)SN = dξ
2

π
∫

π/N

0

sinNξ

ξ

= dt
2

π
∫

π

0

sin t

t

= Si(π)
2

π
= 1.178979744 … (3.7.10)

N

Si(x) ≡ dt.∫
x

0

sin t
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3.8: Problems

Write  in the form .

Derive the coefficients  in Equation (3.2.2).

Let  be defined for . Parseval’s identity is given by

Assuming the the Fourier series of  converges uniformly in , prove Parseval’s identity by multiplying the Fourier
series representation by  and integrating from  to . [In Section 9.6.3 we will encounter Parseval’s equality
for Fourier transforms which is a continuous version of this identity.]

Consider the square wave function

a. Find the Fourier series representation of this function and plot the first 50 terms.
b. Apply Parseval’s identity in Problem 3 to the result in part a.
c. Use the result of part  to show .

For the following sets of functions: i) show that each is orthogonal on the given interval, and ii) determine the corresponding
orthonormal set.

a. .
b. .
c. .

Consider .

a. Derive the trigonometric identity giving  in terms of  and  using DeMoivre’s Formula.
b. Find the Fourier series of  on  without computing any integrals.

Find the Fourier series of the following:

a. .
b. .

 Exercise 3.8.1

y(t) = 3 cos 2t−4 sin2t y(t) = A cos(2πft+ϕ)

 Exercise 3.8.2

bn

 Exercise 3.8.3

f(x) x ∈ [−L,L]

(x)dx = + + .
1

L
∫

L

−L

f 2
a2

0

2
∑
n=1

∞

a2
n b2

n

f(x) (−L,L)

f(x) x = −L x = L

 Exercise 3.8.4

f(x) = {
1,

−1,

0 < x < π,

π < x < 2π.

b =π2

8
∑∞

n=1
1

(2n−1)
2

 Exercise 3.8.5

{sin2nx}, n = 1, 2, 3, … , 0 ≤ x ≤ π

{cosnπx}, n = 0, 1, 2, … , 0 ≤ x ≤ 2

{sin } , n = 1, 2, 3, … , x ∈ [−L,L]nπx
L

 Exercise 3.8.6

f(x) = 4 2xsin3

θsin3 sinθ sin3θ

f(x) = 4 2xsin3 [0, 2π]

 Exercise 3.8.7

f(x) = x, x ∈ [0, 2π]

f(x) = , |x| < πx2

4
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c. 

Find the Fourier Series of each function  of period . For each series, plot the  th partial sum,

for  and describe the convergence (is it fast? what is it converging to, etc.) [Some simple Maple code for
computing partial sums is shown in the notes.]

a. .
b. .

c. 

Find the Fourier series of  on the given interval. Plot the  th partial sums and describe what you see.

a. .
b. .
c. 

The result in problem  above gives a Fourier series representation of . By picking the right value for  and a little
arrangement of the series, show that [See Example 3.3.2.]

a. 

b. 

Hint: Consider how the series in part a. can be used to do this.

Sketch (by hand) the graphs of each of the following functions over four periods. Then sketch the extensions each of the
functions as both an even and odd periodic function. Determine the corresponding Fourier sine and cosine series and verify the
convergence to the desired function using Maple

a. .
b. .

c. 

d. 

f(x) ={
,π

2

− ,π

2

0 < x < π,

π < x < 2π.

 Exercise 3.8.8

f(x) 2π N

= + [ cosnx+ sinnx] ,SN

a0

2
∑
n=1

N

an bn

N = 5, 10, 50

f(x) = x, |x| < π

f(x) = |x|, |x| < π

f(x) = {
0,

1,

−π < x < 0,

0 < x < π.

 Exercise 3.8.9

f(x) = x N

0 < x < 2

−2 < x < 2

1 < x < 2

 Exercise 3.8.10

7 b x2

4
x

= 1 + + + +⋯
π2

6

1

22

1

32

1

42

= 1 + + + +⋯ .
π2

8

1

32

1

52

1

72

 Exercise 3.8.11

f(x) = , 0 < x < 1x2

f(x) = x(2 −x), 0 < x < 2

f(x) = {
0,
1,

0 < x < 1,
1 < x < 2.

f(x) = {
π,

2π−x,

0 < x < π,

π < x < 2π.
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Consider the function .

a. Show that .
b. Integrate the series in part a and show that

c. Find the Fourier cosine series of  on  and compare it to the result in part b.

Consider the function .

a. Find the Fourier sine series representation of this function and plot the first 50 terms.
b. Find the Fourier cosine series representation of this function and plot the first 50 terms.
c. Apply Parseval’s identity in Problem 3 to the result in part .
d. Use the result of part c to find the sum .

Differentiate the Fourier sine series term by term in Problem 18. Show that the result is not the derivative of .

Find the general solution to the heat equation, , on  satisfying the boundary conditions  and 
. Determine the solution satisfying the initial condition,

Find the general solution to the wave equation , on  satisfying the boundary conditions  and 
. Determine the solution satisfying the initial conditions, , and .

Recall the plucked string initial profile example in the last chapter given by

satisfying fixed boundary conditions at  and . Find and plot the solutions at , of , for 
, with .

Find and plot the solutions at , of the problem

 Exercise 3.8.12

f(x) = x, −π < x < π

x = 2 (−1∑∞
n=1 )n+1 sin nx

n

= −4 (−1 .x2 π2

3
∑
n=1

∞

)n+1 cosnx

n2

f(x) = x2 [0, π]

 Exercise 3.8.13

f(x) = x, 0 < x < 2

b

∑∞
n=1

1

n4

 Exercise 3.8.14

f(x) = x

 Exercise 3.8.15

− = 0ut uxx [0, π] (0, t) = 0ux
u(π, t) = 0

u(x, 0) ={
x,

π−x,

0 ≤ x ≤ ,π

2

≤ x ≤ π,π

2

 Exercise 3.8.16

= 2utt uxx [0, 2π] u(0, t) = 0

(2π, t) = 0ux u(x, 0) = x(4π−x) (x, 0) = 0ut

 Exercise 3.8.17

f(x) ={
x,

ℓ −x,

0 ≤ x ≤ ,ℓ
2

≤ x ≤ ℓ,ℓ
2

x = 0 x = ℓ t = 0, .2, … , 1.0 =utt uxx
u(x, 0) = f(x), (x, 0) = 0ut x ∈ [0, 1]

 Exercise 3.8.18

t = 0, .2, … , 1.0
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Find the solution to Laplace’s equation, , on the unit square,  satisfying the boundary conditions 
 , and .
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utt

u(x, 0)

(x, 0)ut

u(0, t)

u(1, t)

= , 0 ≤ x ≤ 1, t > 0uxx

=

⎧

⎩
⎨
⎪⎪

⎪⎪

0,

1,

0,

0 ≤ x < ,1
4

≤ x ≤ ,1
4

3
4

< x ≤ 1,3
4

= 0,

= 0, t > 0,

= 0, t > 0.

 Exercise 3.8.19

+ = 0uxx uyy [0, 1] ×[0, 1]

u(0, y) = 0, u(1, y) = y(1 −y), u(x, 0) = 0 u(x, 1) = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90931?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/03%3A_Trigonometric_Fourier_Series/3.08%3A_Problems
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
https://people.uncw.edu/hermanr/pde1/PDEbook


1

CHAPTER OVERVIEW

4: Sturm-Liouville Boundary Value Problems
We have seen that trigonometric functions and special functions are the solutions of differential equations. These solutions give
orthogonal sets of functions which can be used to represent functions in generalized Fourier series expansions. At the same time we
would like to generalize the techniques we had first used to solve the heat equation in order to solve more general initial-boundary
value problems. Namely, we use separation of variables to separate the given partial differential equation into a set of ordinary
differential equations. A subset of those equations provide us with a set of boundary value problems whose eigenfunctions are
useful in representing solutions of the partial differential equation. Hopefully, those solutions will form a useful basis in some
function space.

A class of problems to which our previous examples belong are the Sturm-Liouville eigenvalue problems. These problems involve
self-adjoint (differential) operators which play an important role in the spectral theory of linear operators and the existence of the
eigenfunctions needed to solve the interesting physics problems described by the above initial-boundary value problems. In this
section we will introduce the Sturm-Liouville eigenvalue problem as a general class of boundary value problems containing the
Legendre and Bessel equations and supplying the theory needed to solve a variety of problems.

4.1: Sturm-Liouville Operators
4.2: Properties of Sturm-Liouville Eigenvalue Problems
4.3: The Eigenfunction Expansion Method
4.4: Appendix- The Fredholm Alternative Theorem
4.5: Problems

This page titled 4: Sturm-Liouville Boundary Value Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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4.1: Sturm-Liouville Operators
In physics many problems arise in the form of boundary value problems involving second order ordinary differential equations. For
example, we will explore the wave equation and the heat equation in three dimensions. Separating out the time dependence leads to
a three dimensional boundary value problem in both cases. Further separation of variables leads to a set of boundary value
problems involving second order ordinary differential equations.

In general, we might obtain equations of the form

subject to boundary conditions. We can write such an equation in operator form by defining the differential operator

where . Then, Equation  takes the form

Recall that we had solved such nonhomogeneous differential equations in Chapter 2. In this section we will show that these
equations can be solved using eigenfunction expansions. Namely, we seek solutions to the eigenvalue problem

with homogeneous boundary conditions on  and then seek a solution of the nonhomogeneous problem, , as an expansion
over these eigenfunctions. Formally, we let

However, we are not guaranteed a nice set of eigenfunctions. We need an appropriate set to form a basis in the function space.
Also, it would be nice to have orthogonality so that we can easily solve for the expansion coefficients.

It turns out that any linear second order differential operator can be turned into an operator that possesses just the right properties
(self-adjointedness) to carry out this procedure. The resulting operator is referred to as a SturmLiouville operator. We will
highlight some of the properties of these operators and see how they are used in applications.

We define the Sturm-Liouville operator as

The Sturm-Liouville eigenvalue problem is given by the differential equation

or

for , plus boundary conditions. The functions ,  and  are assumed to be continuous on 
 and  on . If the interval is finite and these assumptions on the coefficients are true on , then the

problem is said to be a regular Sturm-Liouville problem. Otherwise, it is called a singular Sturm-Liouville problem.

We also need to impose the set of homogeneous boundary conditions

The  s and  are constants. For different values, one has special types of boundary conditions. For , we have what are
called Dirichlet boundary conditions. Namely,  and . For , we have Neumann boundary conditions. In this
case,  and . In terms of the heat equation example, Dirichlet conditions correspond to maintaining a fixed

(x) + (x) + (x)y = f(x)a2 y′′ a1 y′ a0 (4.1.1)

L = (x) + (x)D+ (x),a2 D2 a1 a0

D = d/dx (4.1.1)

Ly = f . 

Lϕ = λϕ

ϕ Ly = f

y(x) = (x).∑
n=1

∞

cnϕn

L = p(x) +q(x).
d

dx

d

dx
(4.1.2)

L = −λσ(x)y,

(p(x) )+q(x)y+λσ(x)y = 0,
d

dx

dy

dx
(4.1.3)

x ∈ (a, b), y = y(x) p(x), (x)p′ q(x) σ(x)

(a, b) p(x) > 0, σ(x) > 0 [a, b] [a, b]

y(a) + (a) = 0,α1 β1y
′

y(b) + (b) = 0.α2 β2y
′ (4.1.4)

α′ β ′ = 0βi
y(a) = 0 y(b) = 0 = 0αi

(a) = 0y′ (b) = 0y′
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temperature at the ends of the rod. The Neumann boundary conditions would correspond to no heat flow across the ends, or
insulating conditions, as there would be no temperature gradient at those points. The more general boundary conditions allow for
partially insulated boundaries.

Dirichlet boundary conditions - the solution takes fixed values on the boundary. These are named after Gustav Lejeune
Dirichlet (  ).
Neumann boundary conditions - the derivative of the solution takes fixed values on the boundary. These are named after
Carl Neumann (1832-1925).

Another type of boundary condition that is often encountered is the periodic boundary condition. Consider the heated rod that has
been bent to form a circle. Then the two end points are physically the same. So, we would expect that the temperature and the
temperature gradient should agree at those points. For this case we write  and . Boundary value problems
using these conditions have to be handled differently than the above homogeneous conditions. These conditions leads to different
types of eigenfunctions and eigenvalues.

As previously mentioned, equations of the form  occur often. We form. now show that any second order linear operator can
be put into the form of the Sturm-Liouville operator. In particular, equation  can be put into the form

Another way to phrase this is provided in the theorem:

The proof of this is straight forward as we soon show. Let’s first consider the equation  for the case that .
Then, we can write the equation in a form in which the first two terms combine,

The resulting equation is now in Sturm-Liouville form. We just identify  and .

Not all second order differential equations are as simple to convert. Consider the differential equation

In this case  and . So, this does not fall into this case. However, we can change the operator in this
equation,  , to a Sturm-Liouville operator,  for a  that depends on the coefficients  and 

In the Sturm Liouville operator the derivative terms are gathered together into one perfect derivative, . This is similar to
what we saw in the Chapter 2 when we solved linear first order equations. In that case we sought an integrating factor. We can do
the same thing here. We seek a multiplicative function  that we can multiply through  so that it can be written in Sturm-
Liouville form.

We first divide out the , giving

Next, we multiply this differential equation by ,

The first two terms can now be combined into an exact derivative  if the second coefficient is . Therefore, 
satisfies a first order, separable differential equation:

This is formally solved to give the sought integrating factor

 Note

1805 −1859

y(a) = y(b) (a) = (b)y′ y′

(4.1.1)

(4.1.1)

(p(x) )+q(x)y = F (x).
d

dx

dy

dx
(4.1.5)

(4.1.1) (x) = (x)a1 a′
2

f(x) = (x) + (x) + (x)ya2 y′′ a1 y′ a0

= + (x)y.( (x) )a2 y′ ′
a0 (4.1.6)

p(x) = (x)a2 q(x) = (x)a0

+x +2y = 0.x2y′′ y′

(x) =a2 x2 (x) = 2x ≠ (x)a′
2 a1

D+x2 xD Dp(x)D p(x) x2 x. .

Dp(x)D

μ(x) (4.1.1)

(x)a2

+ + y = .y′′ (x)a1

(x)a2

y′ (x)a0

(x)a2

f(x)

(x)a2

μ

μ(x) +μ(x) +μ(x) y = μ(x) .y′′ (x)a1

(x)a2

y′ (x)a0

(x)a2

f(x)

(x)a2

(μ )y′ ′ (x)μ′ μ(x)

= μ(x) .
dμ

dx

(x)a1

(x)a2
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Thus, the original equation can be multiplied by factor

to turn it into Sturm-Liouville form.

In summary,

Equation ,

can be put into the Sturm-Liouville form

where

Convert  into Sturm-Liouville form.

Solution
We can multiply this equation by

to put the equation in Sturm-Liouville form:

This page titled 4.1: Sturm-Liouville Operators is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

μ(x) = .e
∫ dx

(x)a1

(x)a2

=
μ(x)

(x)a2

1

(x)a2

e
∫ dx

(x)a1

(x)a2

 Summary

(4.1.1)

(x) + (x) + (x)y = f(x),a2 y′′ a1 y′ a0 (4.1.7)

(p(x) )+q(x)y = F (x),
d

dx

dy

dx
(4.1.8)

p(x) = ,e
∫ dx

(x)a1

(x)a2

q(x) = p(x) ,
(x)a0

(x)a2

F (x) = p(x) .
f(x)

(x)a2

(4.1.9)

 Example 4.1.1

+x +2y = 0x2y′′ y′

= =
μ(x)

(x)a2

1

x2
e∫ dx

x
1

x′

0 = x + + yy′′ y′ 2

x

= + y.(x )y′ ′ 2

x
(4.1.10)
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4.2: Properties of Sturm-Liouville Eigenvalue Problems
There are several properties that can be proven for the (regular) Sturm-Liouville eigenvalue problem in (4.1.3). However, we will
not prove them all here. We will merely list some of the important facts and focus on a few of the properties.

1. The eigenvalues are real, countable, ordered and there is a smallest eigenvalue. Thus, we can write them as .
However, there is no largest eigenvalue and .

2. For each eigenvalue  there exists an eigenfunction  with  zeros on .
3. Eigenfunctions corresponding to different eigenvalues are orthogonal with respect to the weight function, . Defining the

inner product of  and  as

then the orthogonality of the eigenfunctions can be written in the form

4. The set of eigenfunctions is complete; i.e., any piecewise smooth function can be represented by a generalized Fourier series
expansion of the eigenfunctions,

where

Actually, one needs , the set of square integrable functions over  with weight function . By square
integrable, we mean that . One can show that such a space is isomorphic to a Hilbert space, a complete inner product
space. Hilbert spaces play a special role in quantum mechanics.

5. The eigenvalues satisfy the Rayleigh quotient

This is verified by multiplying the eigenvalue problem

by  and integrating. Solving this result for , we obtain the Rayleigh quotient. The Rayleigh quotient is useful for getting
estimates of eigenvalues and proving some of the other properties.

Verify some of these properties for the eigenvalue problem

Solution
This is a problem we had seen many times. The eigenfunctions for this eigenvalue problem are , with
eigenvalues  for . These satisfy the properties listed above.

First of all, the eigenvalues are real, countable and ordered, . There is no largest eigenvalue and there is a first
one.

< < …λ1 λ2

n → ∞, → ∞λn
λn ϕn n−1 (a, b)

σ(x)
f(x) g(x)

⟨f , g⟩ = f(x)g(x)σ(x)dx,∫
b

a

(4.2.1)

⟨ , ⟩ = ⟨ , ⟩ , n,m = 1, 2, … .ϕn ϕm ϕn ϕn δnm (4.2.2)

f(x) ∼ (x),∑
n=1

∞

cnϕn

= .cn
⟨f , ⟩ϕn

⟨ , ⟩ϕn ϕn

f(x) ∈ (a, b)L2
σ [a, b] σ(x)

⟨f , f⟩⟨∞

= .λn

− + [p −q ]dxpϕn
dϕn

dx
∣
∣
b

a
∫ b

a ( )
dϕn

dx

2
ϕ2
n

⟨ , ⟩ϕn ϕn

L = − σ(x)ϕn λn ϕn

ϕn λn

 Example 4.2.1

= −λy, y(0) = y(π) = 0.y′′ (4.2.3)

(x) = sinnxϕn

=λn n2 n = 1, 2, …

1 < 4 < 9 < …
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The eigenfunctions corresponding to each eigenvalue have  zeros on .  for  This is
demonstrated for several eigenfunctions in Figure .

Figure : Plot of the eigenfunctions  for .

We also know that the set  is an orthogonal set of basis functions of length

Thus, the Rayleigh quotient can be computed using , , and the eigenfunctions it is given by

Therefore, knowing the eigenfunction, the Rayleigh quotient returns the eigenvalues as expected.

We seek the eigenfunctions of the operator found in Example 4.1.1. Namely, we want to solve the eigenvalue problem

subject to a set of homogeneous boundary conditions. Let’s use the boundary conditions

[Note that we do not know  yet, but will choose an appropriate function to obtain solutions.]

Solution
Expanding the derivative, we have

Multiply through by  to obtain

Notice that if we choose , then this equation can be made a Cauchy-Euler type equation. Thus, we have

The characteristic equation is

n−1 (0, π) (x) = sinnxϕn n = 1, 2, 3, 4
4.2.1

4.2.1 (x) sin nxϕn n = 1, 2, 3, 4

{sinnx}∞
n=1

|| || = .ϕn

π

2

−−
√

p(x) = 1 q(x) = 0

R =
− + dx|ϕnϕ′

n
π
0 ∫ π

0 ( )ϕ′
n

2

π
2

= (− cosnx dx = .
2

π
∫

π

0
n2 )2 n2

 Example 4.2.2

Ly = + y = −λσy(x )y′ ′ 2

x
(4.2.4)

(1) = 0, (2) = 0.y′ y′

σ(x)

x + + y = −λσy. y′′ y′ 2

x

x

+x +(2 +λxσ)y = 0.x2y′′ y′

σ(x) = x−1

+x +(λ+2)y = 0.x2y′′ y′
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For oscillatory solutions, we need . Thus, the general solution is

Next we apply the boundary conditions.  forces . This leaves

The second condition, , yields

This will give nontrivial solutions when

In summary, the eigenfunctions for this eigenvalue problem are

and the eigenvalues are  for 

We include the  case because  constant is a solution of the  case. More specifically, in this case the
characteristic equation reduces to . Thus, the general solution of this Cauchy-Euler equation is

Setting , forces  automatically vanishes, leaving the solution in this case as .

We note that some of the properties listed in the beginning of the section hold for this example. The eigenvalues are seen to
be real, countable and ordered. There is a least one, . Next, one can find the zeros of each eigenfunction on .
Then the argument of the cosine, , takes values  to  for . The cosine function has  roots on this
interval.

Orthogonality can be checked as well. We set up the integral and use the substitution . This gives

Adjoint Operators
In the study of the spectral theory of matrices, one learns about the adjoint of the matrix, , and the role that self-adjoint, or
Hermitian, matrices play in diagonalization. Also, one needs the concept of adjoint to discuss the existence of solutions to the
matrix problem . In the same spirit, one is interested in the existence of solutions of the operator equation  and
solutions of the corresponding eigenvalue problem. The study of linear operators on a Hilbert space is a generalization of what the
reader had seen in a linear algebra course.

Just as one can find a basis of eigenvectors and diagonalize Hermitian, or self-adjoint, matrices (or, real symmetric in the case of
real matrices), we will see that the Sturm-Liouville operator is self-adjoint. In this section we will define the domain of an operator
and introduce the notion of adjoint operators. In the last section we discuss the role the adjoint plays in the existence of solutions to
the operator equation .

We begin by defining the adjoint of an operator. The adjoint, , of operator  satisfies

+λ+2 = 0.r2

λ+2 > 0

y(x) = cos( ln |x|) + sin( ln |x|). c1 λ+2
− −−−−√ c2 λ+2

− −−−−√ (4.2.5)

(1) = 0y′ = 0c2

y(x) = cos( lnx).c1 λ+2
− −−−−√

(2) = 0y′

sin( ln2) = 0.λ+2
− −−−−√

ln2 = nπ, n = 0, 1, 2, 3 … .λ+2
− −−−−√

(x) = cos( lnx), 1 ≤ x ≤ 2yn
nπ

ln2

= −2λn ( )nπ

ln 2

2
n = 0, 1, 2, …

 Note

n = 0 y(x) = λ = −2
= 0r2

y(x) = + ln |x|.c1 c2

(1) = 0y′ = 0. (2)c2 y′ y(x) = c1

= −2λ0 [1, 2]
lnxnπ

ln 2 0 nπ x ∈ [1, 2] n−1

y = π lnx/ ln2

⟨ , ⟩yn ym = cos( lnx) cos( lnx)∫
2

1

nπ

ln2

mπ

ln2

dx

x

= cosny cosmydy
ln2

π
∫

π

0

= .
ln2

2
δn,m (4.2.6)

A†

y = Ax Lu = f

Lu = f

L† L
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for all  in the domain of  and  in the domain of . Here the domain of a differential operator  is the set of all 
satisfying a given set of homogeneous boundary conditions. This is best understood through example.

Find the adjoint of  for .

Solution
In order to find the adjoint, we place the operator inside an integral. Consider the inner product

We have to move the operator  from  and determine what operator is acting on  in order to formally preserve the inner
product. For a simple operator like , this is easily done using integration by parts. For the given operator, we will need
to apply several integrations by parts to the individual terms. We consider each derivative term in the integrand separately.

For the  term, we integrate by parts to find

Now, we consider the  term. In this case it will take two integrations by parts:

Combining these results, we obtain

Inserting the boundary conditions for , one has to determine boundary conditions for  such that

This leaves

Therefore,

When , the operator is called formally self-adjoint. When the domain of  is the same as the domain of , the term self-
adjoint is used. As the domain is important in establishing self-adjointness, we need to do a complete example in which the domain
of the adjoint is found.

⟨u,Lv⟩ = ⟨ u, v⟩L+

v L u L+ L u ∈ (a, b)L2
σ

 Example 4.2.3

L = (x) + (x)D+ (x)a2 D2 a1 a0 D = d/dx

⟨u,Lv⟩ = u ( + + v)dx.∫
b

a

a2v
′′ a1v

′ a0

L v u

L = d

dx

a1v
′

u(x) (x) (x)dx = − v(x)dx.∫
b

a

a1 v′ (x)u(x)v(x)|a1
b
a ∫

b

a

(u(x) (x))a1
′ (4.2.7)

a2v
′′

u(x) (x) (x)dx =∫
b

a

a2 v′′

=

− v(x dx(x)u(x) (x)|a2 v′ b

a ∫
b

a

(u(x) (x))a2
′ )′

[ (x)u(x) (x) − v(x)]a2 v′ ( (x)u(x))a2
′ ∣∣

b

a

+ v(x)dx.∫
b

a

(u(x) (x))a2
′′ (4.2.8)

⟨u,Lv⟩ =

=

u ( + + v)dx∫
b

a

a2v
′′ a1v

′ a0

[ (x)u(x)v(x) + (x)u(x) (x) − v(x)]a1 a2 v′ ( (x)u(x))a2
′ ∣∣

b

a

+ [ − + u] vdx.∫
b

a

( u)a2
′′ ( u)a1

′ a0 (4.2.9)

v u

= 0.[ (x)u(x)v(x) + (x)u(x) (x) − v(x)]a1 a2 v′ ( (x)u(x))a2
′ ∣∣

b

a

⟨u,Lv⟩ = [ − + u] vdx ≡ ⟨ u, v⟩ .∫
b

a

( u)a2
′′ ( u)a1

′
a0 L†

= (x) − (x) + (x).L† d2

dx2
a2

d

dx
a1 a0 (4.2.10)

= LL† L L†

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90257?pdf


4.2.5 https://math.libretexts.org/@go/page/90257

Determine  and its domain for operator  where  satisfies the boundary conditions  on .

Solution

We need to find the adjoint operator satisfying . Therefore, we rewrite the integral

From this we have the adjoint problem consisting of an adjoint operator and the associated boundary condition (or, domain of 
.):

Lagrange’s and Green’s Identities
Before turning to the proofs that the eigenvalues of a Sturm-Liouville problem are real and the associated eigenfunctions
orthogonal, we will first need to introduce two important identities. For the Sturm-Liouville operator,

we have the two identities:

The proof of Lagrange’s identity follows by a simple manipulations of the operator:

Green’s identity is simply proven by integrating Lagrange’s identity.

Orthogonality and Reality
We are now ready to prove that the eigenvalues of a Sturm-Liouville problem are real and the corresponding eigenfunctions are
orthogonal. These are easily established using Green’s identity, which in turn is a statement about the Sturm-Liouville operator
being self-adjoint.

 Example 4.2.4

L† Lu = du

dx
u u(0) = 2u(1) [0, 1]

⟨v,Lu⟩ = ⟨ v, u⟩L†

⟨v,Lu⟩⟩ = v dx = − u dx = ⟨ v, u⟩ .∫
1

0

du

dx
uv|10 ∫

1

0

dv

dx
L+

L†

 1.  = − .L† d

dx

 2.  = 0 ⇒ 0 = u(1)[v(1) −2v(0)] ⇒ v(1) = 2v(0).uv|10

L = (p )+q,
d

dx

d

dx

 Definition : Lagrange's Identity4.2.1

uLv−vLu = .[p (u −v )]v′ u′ ′

 Definition : Green's Identity4.2.2

(uLv−vLu)dx = .∫
b

a

[p (u −v )]|v′ u′ b

a

uLv−vLu = u [ (p )+qv]−v[ (p )+qu]
d

dx

dv

dx

d

dx

du

dx

= u (p )−v (p )
d

dx

dv

dx

d

dx

du

dx

= u (p )+p −v (p )−p
d

dx

dv

dx

du

dx

dv

dx

d

dx

du

dx

du

dx

dv

dx

= [pu −pv ] .
d

dx

dv

dx

du

dx
(4.2.11)
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The eigenvalues of the Sturm-Liouville problem (4.1.3) are real.

Solution
Let  be a solution of the eigenvalue problem associated with  :

We want to show that Namely, we show that , where the bar means complex conjugate. So, we also consider the
complex conjugate of this equation,

Now, multiply the first equation by , the second equation by , and then subtract the results. We obtain

Integrating both sides of this equation, we have

We apply Green’s identity to the left hand side to find

Using the homogeneous boundary conditions (4.1.4) for a self-adjoint operator, the left side vanishes. This leaves

The integral is nonnegative, so we must have . Therefore, the eigenvalues are real.

The eigenfunctions corresponding to different eigenvalues of the Sturm-Liouville problem (4.3) are orthogonal.

Solution
This is proven similar to the last example. Let  be a solution of the eigenvalue problem associated with ,

and let  be a solution of the eigenvalue problem associated with ,

Now, multiply the first equation by  and the second equation by . Subtracting these results, we obtain

Integrating both sides of the equation, using Green’s identity, and using the homogeneous boundary conditions, we obtain

Since the eigenvalues are distinct, we can divide by , leaving the desired result,

 Example 4.2.5

(x)ϕn λn

L = − σ .ϕn λn ϕn

=λ̄n λn

L = − σ .ϕ̄n λ̄n ϕ̄n

ϕ̄n ϕn

L − L = ( − )σ .ϕ̄n ϕn ϕn ϕ̄n λ̄n λn ϕnϕ̄n

( L − L )dx = ( − ) σ dx.∫
b

a

ϕ̄n ϕn ϕn ϕ̄n λ̄n λn ∫
b

a

ϕnϕ̄n

= ( − ) σ dx.[p( − )]ϕ̄nϕ
′
n ϕnϕ̄

′
n

b

a
λ̄n λn ∫

b

a

ϕnϕ̄n

0 = ( − ) σ dx.λ̄n λn ∫
b

a

∥ ∥ϕn
2

=λ̄n λn

 Example 4.2.6

(x)ϕn λn

L = − σ ,ϕn λn ϕn

(x)ϕm ≠λm λn

L = − σ ,ϕm λm ϕm

ϕm ϕn

L − L = ( − )σϕm ϕn ϕn ϕm λm λn ϕnϕm

0 = ( − ) σ dx.λm λn ∫
b

a

ϕnϕm

−λm λn

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90257?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/04%3A_Sturm-Liouville_Boundary_Value_Problems/4.01%3A_Sturm-Liouville_Operators#4.3
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/04%3A_Sturm-Liouville_Boundary_Value_Problems/4.01%3A_Sturm-Liouville_Operators#(4.1.4)


4.2.7 https://math.libretexts.org/@go/page/90257

Therefore, the eigenfunctions are orthogonal with respect to the weight function .

Rayleigh Quotient
The Rayleigh Quotient is useful for getting estimates of eigenvalues and proving some of the other properties associated with
Sturm-Liouville eigenvalue problems. The Rayleigh quotient is general and finds applications for both matrix eigenvalue problems
as well as self-adjoint operators. For a Hermitian matrix  the Rayleigh quotient is given by

One can show that the critical values of the Rayleigh quotient, as a function of , are the eigenvectors of  and the values of  at
these critical values are the corresponding eigenvectors. In particular, minimizing  over the vector space will give the lowest
eigenvalue. This leads to the Rayleigh-Ritz method for computing the lowest eigenvalues when the eigenvectors are not known.

This definition can easily be extended to Sturm-Liouville operators,

We begin by multiplying the eigenvalue problem

by  and integrating. This gives

One can solve the last equation for  to find

It appears that we have solved for the eigenvalues and have not needed the machinery we had developed in Chapter 4 for studying
boundary value problems. However, we really cannot evaluate this expression when we do not know the eigenfunctions,  yet.
Nevertheless, we will see what we can determine from the Rayleigh quotient.

One can rewrite this result by performing an integration by parts on the first term in the numerator. Namely, pick  and 

 for the standard integration by parts formula. Then, we have

Inserting the new formula into the expression for , leads to the Rayleigh Quotient

In many applications the sign of the eigenvalue is important. As we had seen in the solution of the heat equation, .
Since we expect the heat energy to diffuse, the solutions should decay in time. Thus, we would expect . In studying the wave
equation, one expects vibrations and these are only possible with the correct sign of the eigenvalue (positive again). Thus, in order
to have nonnegative eigenvalues, we see from  that

a. , and

σ dx = 0.∫
b

a

ϕnϕm

σ(x)

M

R(v) = .
⟨v,Mv⟩

⟨v, v⟩

v M R

R(v

R ( ) = .ϕn

⟨ L ⟩ϕn ϕn

⟨ , ⟩ϕn ϕn

L = − σ(x)ϕn λn ϕn

ϕn

[ (p )+q ]dx = − σdx∫
b

a

ϕn

d

dx

dϕn

dx
ϕ2
n λn ∫

b

a

ϕ2
n

λ

= = R ( ) .λn

− [ (p )+q ]dx∫
b

a ϕn
d

dx

dϕn

dx
ϕ2
n

σdx∫ b

a ϕ2
n

ϕn

(x)ϕn

u = ϕn

dv= (p )dxd

dx

dϕn

dx

(p ) dx = − [p −q ] dx.∫
b

a

ϕn

d

dx

dϕn

dx
pϕn

dϕn

dx

∣
∣
∣
b

a

∫
b

a

( )
dϕn

dx

2

ϕ2
n

λ

= .λn

− + [p −q ]dxpϕn
dϕn

dx
∣
∣
b

a
∫ b

a
( )

dϕn

dx

2
ϕ2
n

σdx∫
b

a ϕ2
n

(4.2.12)

+kλT = 0T ′

λ > 0

(4.2.12)

q(x) ≤ 0
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b. .

Furthermore, if  is a zero eigenvalue, then  and  in the homogeneous boundary conditions. This can be seen
by setting the numerator equal to zero. Then,  and . The second of these conditions inserted into the boundary
conditions forces the restriction on the type of boundary conditions.

One of the properties of Sturm-Liouville eigenvalue problems with homogeneous boundary conditions is that the eigenvalues are
ordered,  . Thus, there is a smallest eigenvalue. It turns out that for any continuous function, ,

and this minimum is obtained when . This result can be used to get estimates of the minimum eigenvalue by using
trial functions which are continuous and satisfy the boundary conditions, but do not necessarily satisfy the differential equation.

We have already solved the eigenvalue problem , . In this case, the lowest eigenvalue is 
. We can pick a nice function satisfying the boundary conditions, say . Inserting this into Equation 
, we find

Indeed, .

This page titled 4.2: Properties of Sturm-Liouville Eigenvalue Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed,
and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.

≥ 0−pϕn
dϕn

dx
∣
∣
b

a

λ q(x) ≡ 0 = = 0α1 α2

q(x) = 0 (x) = 0ϕ′
n

<λ1 < …λ2 y(x)

=λ1 min
y(x)

− + [p −q ]dxpy
dy

dx
∣
∣
b

a
∫ b

a ( )
dy

dx

2
y2

σdx∫ b

a
y2

(4.2.13)

y(x) = (x)ϕ1

 Example 4.2.7

+λϕ = 0ϕ′′ ϕ(0) = 0,ϕ(1) = 0
=λ1 π2 y(x) = x−x2

(4.2.13)

≤ = 10.λ1

(1 −2x dx∫ 1
0 )2

dx∫ 1
0 (x− )x2 2

10 ≥ π2
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4.3: The Eigenfunction Expansion Method
In this section we solve the nonhomogeneous problem  using expansions over the basis of Sturm-Liouville eigenfunctions.
We have seen that Sturm-Liouville eigenvalue problems have the requisite set of orthogonal eigenfunctions. In this section we will
apply the eigenfunction expansion method to solve a particular nonhomogeneous boundary value problem.

Recall that one starts with a nonhomogeneous differential equation

where  is to satisfy given homogeneous boundary conditions. The method makes use of the eigenfunctions satisfying the
eigenvalue problem

subject to the given boundary conditions. Then, one assumes that  can be written as an expansion in the eigenfunctions,

and inserts the expansion into the nonhomogeneous equation. This gives

The expansion coefficients are then found by making use of the orthogonality of the eigenfunctions. Namely, we multiply the last
equation by  and integrate. We obtain

Orthogonality yields

Solving for , we have

As an example, we consider the solution of the boundary value problem

Solution
This equation is already in self-adjoint form. So, we know that the associated Sturm-Liouville eigenvalue problem has an
orthogonal set of eigenfunctions. We first determine this set. Namely, we need to solve

Rearranging the terms and multiplying by , we have that

Ly = f

Ly = f ,

y(x)

L = − σϕn λn ϕn

y(x)

y(x) = (x),∑
n=1

∞

cnϕn

f(x) = L( (x)) = − σ(x) (x).∑
n=1

∞

cnϕn ∑
n=1

∞

cnλn ϕn

(x)ϕm

f(x) (x)dx = − (x) (x)σ(x)dx.∫
b

a

ϕm ∑
n=1

∞

cnλn ∫
b

a

ϕn ϕm

f(x) (x)dx = − (x)σ(x)dx.∫
b

a

ϕm cmλm ∫
b

a

ϕ2
m

cm

= − .cm
f(x) (x)dx∫ b

a
ϕm

(x)σ(x)dxλm ∫ b

a
ϕ2
m

 Example 4.3.1

+(x )y′ ′ y

x
y(1)

= , x ∈ [1, e],
1

x
= 0 = y(e).

(4.3.1)

(4.3.2)

+ = −λσϕ, ϕ(1) = 0 = ϕ(e).(x )ϕ′ ′ ϕ

x
(4.3.3)

x

+x +(1 +λσx)ϕ = 0.x2ϕ′′ ϕ′
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This is almost an equation of Cauchy-Euler type. Picking the weight function , we have

This is easily solved. The characteristic equation is

One obtains nontrivial solutions of the eigenvalue problem satisfying the boundary conditions when . The solutions are

where .

It is often useful to normalize the eigenfunctions. This means that one chooses A so that the norm of each eigenfunction is one.
Thus, we have

Thus, . Several of these eigenfunctions are show in Figure .

Figure : Plots of the first five eigenfunctions, .

We now turn towards solving the nonhomogeneous problem, . We first expand the unknown solution in terms of the
eigenfunctions,

Inserting this solution into the differential equation, we have

σ(x) = 1
x

+x +(1 +λ)ϕ = 0.x2ϕ′′ ϕ′

+(1 +λ) = 0.r2

λ > −1

(x) = A sin(nπ lnx), n = 1, 2, …ϕn

= −1λn n2π2

1 = (x σ(x)dx∫
e

1
ϕn )2

= sin(nπ lnx) dxA2 ∫
e

1

1

x

= sin(nπy)dy = .A2 ∫
1

0

1

2
A2 (4.3.4)

A = 2
–

√ 4.3.1

4.3.1 y(x) = sin(nπ ln x)2–√

Ly = 1
x

y(x) = sin(nπ lnx).∑
n=1

∞

cn 2
–

√

= Ly = − sin(nπ lnx) .
1

x
∑
n=1

∞

cnλn 2
–

√
1

x
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Next, we make use of orthogonality. Multiplying both sides by the eigenfunction  and integrating,
gives

Solving for , we have

Finally, we insert these coefficients into the expansion for . The solution is then

We plot this solution in Figure .

Figure : Plot of the solution in Example .

This page titled 4.3: The Eigenfunction Expansion Method is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
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(x) = sin(mπ lnx)ϕm 2
–

√

= sin(mπ lnx) dx = [(−1 −1] .λmcm ∫
e

1
2
–

√
1

x

2
–√

mπ
)m

cm

= .cm
2
–

√

mπ

[(−1 −1])m

−1m2π2

y(x)

y(x) = sin(nπ ln(x)).∑
n=1

∞
2

nπ

[(−1 −1])n

−1n2π2

4.3.2

4.3.2 4.3.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90258?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/04%3A_Sturm-Liouville_Boundary_Value_Problems/4.03%3A_The_Eigenfunction_Expansion_Method
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
https://people.uncw.edu/hermanr/pde1/PDEbook


4.4.1 https://math.libretexts.org/@go/page/90939

4.4: Appendix- The Fredholm Alternative Theorem
Given that , when can one expect to find a solution? Is it unique? These questions are answered by the Fredholm
Alternative Theorem. This theorem occurs in many forms from a statement about solutions to systems of algebraic equations to
solutions of boundary value problems and integral equations. The theorem comes in two parts, thus the term "alternative". Either
the equation has exactly one solution for all , or the equation has many solutions for some  ’s and none for the rest.

The reader is familiar with the statements of the Fredholm Alternative for the solution of systems of algebraic equations. One seeks
solutions of the system  for  an  matrix. Defining the matrix adjoint,  through  for all 

, then either

The equation  has a solution if and only if  for all  satisfying .

or

A solution of , if it exists, is unique if and only if  is the only solution of .

The second alternative is more familiar when given in the form: The solution of a nonhomogeneous system of  equations and 
unknowns is unique if the only solution to the homogeneous problem is the zero solution. Or, equivalently,  is invertible, or has
nonzero determinant.

Proof

We prove the second theorem first. Assume that  for  and . Then  for all . Therefore,
the solution is not unique. Conversely, if there are two different solutions,  and , satisfying  and , then
one has a nonzero solution  such that .

The proof of the first part of the first theorem is simple. Let  and . Then we have

For the second part we assume that  for all  such that . Write  as the sum of a part that is in the range of 
and a part that in the space orthogonal to the range of . Then,   for all . Thus, 

. Since  for all  in the nullspace of , then .

Therefore,  implies that

This means that , giving  is in the range of . So,  has a solution.

Determine the allowed forms of  for a solution of  to exist, where

Solution

First note that . This is seen by looking at

Ly = f

f f

Ax = b A n×m A∗ ⟨Ax, y⟩ = ⟨x, y⟩A∗

x, y, ∈ C
n

 Theorem : First Alternative4.4.1

Ax = b ⟨b, v⟩ = 0 v v= 0A∗

 Theorem : Second Alternative4.4.2

Ax = b x = 0 Ax = 0

n n

A

 Proof of Theorem 4.4.2

Ax = 0 x ≠ 0 A = bx0 A ( +αx) = bx0 α

x1 x2 A = bx1 A = bx2

x = −x1 x2 Ax = A ( − ) = 0x1 x2

v= 0A∗ A = bx0

⟨b, v⟩ = ⟨A , v⟩ = ⟨ , v⟩ = 0.x0 x0 A∗

⟨b, v⟩ = 0 v v= 0A∗ b A

A, b = +bR bO 0 = ⟨ ,Ax⟩ =<bO b, x >A∗ x

A∗bO ⟨b, v⟩ = 0 v A∗ ⟨b, ⟩ = 0bO

⟨b, v⟩ = 0

0 = ⟨b, ⟩ = ⟨ + , ⟩ = ⟨ , ⟩ . bO bR bO bO bO bO

= 0bO b = bR A Ax = b

 Example 4.4.1

b Ax = b

A =( ) .
1

3

2

6

=A∗ Ā
T
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For this example,

We next solve . This means, . So, the nullspace of  is spanned by . For a solution of 
 to exist,  would have to be orthogonal to . Therefore, a solution exists when

So, what does the Fredholm Alternative say about solutions of boundary value problems? We extend the Fredholm Alternative for
linear operators. A more general statement would be

If  is a bounded linear operator on a Hilbert space, then  has a solution if and only if  for every  such that 
.

The statement for boundary value problems is similar. However, we need to be careful to treat the boundary conditions in our
statement. As we have seen, after several integrations by parts we have that

where  involves the boundary conditions on  and . Note that for nonhomogeneous boundary conditions, this term may no
longer vanish.

The solution of the boundary value problem  with boundary conditions  exists if and only if

for all  satisfying  and .

Consider the problem

Solution
Only certain values of  and  will lead to solutions. We first note that

Solutions of

⟨Ax, y⟩

∑
i=1

n

∑
j=1

n

aijxj ȳ i

= ⟨x, y⟩A∗

=∑
j=1

n

xj∑
j=1

n

aij ȳ i

= .∑
j=1

n

xj∑
j=1

n

( )āT
ji
yi (4.4.1)

=( ) .A∗ 1

2

3

6

v = 0A∗ +3 = 0v1 v2 A∗ v = (3, −1)T

Ax = b b v

b = α( ) .
1

3

 Theorem 4.4.3

L Ly = f ⟨f , v⟩ = 0 v

v= 0L†

⟨Lu, v⟩ = S(u, v) +⟨u, v⟩ ,L
+

S(u, v) u v

 Theorem 4.4.4

Lu = f Bu = g

⟨f , v⟩−S(u, v) = 0

v v= 0L
+ v= 0B+

 Example 4.4.2

+u = f(x), u(0) −u(2π) = α, (0) − (2π) = β.u′′ u′ u′

α β

L = = +1.L+ d2

dx2

v= 0, v(0) −v(2π) = 0, (0) − (2π) = 0L† v′ v′
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are easily found to be linear combinations of  and .

Next, one computes

For , this yields

Similarly,

Using , this leads to the conditions that we were seeking,
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v= sinx v= cosx

S(u, v) = [ v−u ]u′ v′ 2π
0

= (2π)v(2π) −u(2π) (2π) − (0)v(0) +u(0) (0).u′ v′ u′ v′ (4.4.2)

v(x) = sinx

S(u, sinx) = −u(2π) +u(0) = α.

S(u, cosx) = β.

⟨f , v⟩−S(u, v) = 0

f(x) sinxdx = α,∫
2π

0

f(x) cosxdx = β.∫
2π

0
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4.5: Problems

Prove the if  and  satisfy the general homogeneous boundary conditions

at  and , then

Prove Green’s Identity  for the general Sturm-Liouville operator .

Find the adjoint operator and its domain for  .

Show that a Sturm-Liouville operator with periodic boundary conditions on  is self-adjoint if and only if .
[Recall, periodic boundary conditions are given as  and .]

The Hermite differential equation is given by . Rewrite this equation in self-adjoint form. From the
Sturm-Liouville form obtained, verify that the differential operator is self adjoint on . Give the integral form for the
orthogonality of the eigenfunctions.

Find the eigenvalues and eigenfunctions of the given Sturm-Liouville problems.

a. .
b. .

The eigenvalue problem  with  is not a Sturm-Liouville eigenvalue problem. Show
that none of the eigenvalues are real by solving this eigenvalue problem.

In Example 4.2.7 we found a bound on the lowest eigenvalue for the given eigenvalue problem.

a. Verify the computation in the example.
b. Apply the method using

Is this an upper bound on 

 Exercise 4.5.1

u(x) v(x)

u(a) + (a) = 0,α1 β1u
′

u(b) + (b) = 0α2 β2u
′

(4.5.1)

x = a x = b

p(x) = 0.[u(x) (x) −v(x) (x)]v′ u′ x=b

x=a

 Exercise 4.5.2

(uLv−vLu)dx =∫
b

a [p (u −v )]|v′ u′ b
a L

 Exercise 4.5.3

Lu = +4 −3u, (0)+u′′ u′ u′ 4u(0) = 0, (1) +4u(1) = 0u′

 Exercise 4.5.4

[a, b] p(a) = p(b)

u(a) = u(b) (a) = (b)u′ u′

 Exercise 4.5.5

−2x +λy = 0y′′ y′

(−∞, ∞)

 Exercise 4.5.6

+λy = 0, (0) = 0 = (π)y′′ y′ y′

+ y = 0, y(1) = y ( ) = 0(x )y′ ′ λ
x

e2

 Exercise 4.5.7

−λx +λy = 0x2y′′ y′ y(1) = y(2) = 0

 Exercise 4.5.8

y(x) = {
x,

1 −x,

0 < x < 1
2

< x < 11
2

λ1
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c. Use the Rayleigh quotient to obtain a good upper bound for the lowest eigenvalue of the eigenvalue problem: 
, .

Use the method of eigenfunction expansions to solve the problems:

a. .
b. .

Determine the solvability conditions for the nonhomogeneous boundary value problem: 
.
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+(λ− )ϕ = 0ϕ′′ x2 ϕ(0) = 0, (1) = 0ϕ′

 Exercise 4.5.9

= , y(0) = y(1) = 0y′′ x2

+4y = , (0) = (1) = 0y′′ x2 y′ y′

 Exercise 4.5.10

+4u = f(x), u(0) = α, (π/4) = βu′′ u′
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CHAPTER OVERVIEW

5: Non-sinusoidal Harmonics and Special Functions

To the pure geometer the radius of curvature is an incidental characteristic-like the grin
of the Cheshire cat. To the physicist it is an indispensable characteristic. It would be
going too far to say that to the physicist the cat is merely incidental to the grin. Physics is
concerned with interrelatedness such as the interrelatedness of cats and grins. In this case
the "cat without a grin" and the "grin without a cat" are equally set aside as purely
mathematical phantasies.

~ Sir Arthur Stanley Eddington (1882-1944)
In this chapter we provide a glimpse into generalized Fourier series in which the normal modes of oscillation are not sinusoidal. For
vibrating strings, we saw that the harmonics were sinusoidal basis functions for a large, infinite dimensional, function space. Now,
we will extend these ideas to non-sinusoidal harmonics and explore the underlying structure behind these ideas. In particular, we
will explore Legendre polynomials and Bessel functions which will later arise in problems having cylindrical or spherical
symmetry.

The background for the study of generalized Fourier series is that of function spaces. We begin by exploring the general context in
which one finds oneself when discussing Fourier series and (later) Fourier transforms. We can view the sine and cosine functions in
the Fourier trigonometric series representations as basis vectors in an infinite dimensional function space. A given function in that
space may then be represented as a linear combination over this infinite basis. With this in mind, we might wonder

Do we have enough basis vectors for the function space?
Are the infinite series expansions convergent?
What functions can be represented by such expansions?

In the context of the boundary value problems which typically appear in physics, one is led to the study of boundary value
problems in the form of Sturm-Liouville eigenvalue problems. These lead to an appropriate set of basis vectors for the function
space under consideration. We will touch a little on these ideas, leaving some of the deeper results for more advanced We note that
the above determination of vector components for finite dimensional spaces is precisely what we had done to compute the Fourier
coefficients using trigonometric bases. Reading further, you will see how this works. courses in mathematics. For now, we will turn
to function spaces and explore some typical basis functions, many which originated from the study of physical problems. The
common basis functions are often referred to as special functions in physics. Examples are the classical orthogonal polynomials
(Legendre, Hermite, Laguerre, Tchebychef) and Bessel functions. But first we will introduce function spaces.

5.1: Function Spaces
5.2: Classical Orthogonal Polynomials
5.3: Fourier-Legendre Series
5.4: Gamma Function
5.5: Fourier-Bessel Series
5.6: Appendix- The Least Squares Approximation
5.7: Problems

Thumbnail: Plot of Bessel function of the first kind,  for integer orders . (Public Domain; Inductiveload via
Wikipedia)
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5.1: Function Spaces
Earlier we studied finite dimensional vector spaces. Given a set of basis vectors, , in vector space , we showed that we
can expand any vector  in terms of this basis, . We then spent some time looking at the simple case of
extracting the components  of the vector. The keys to doing this simply were to have a scalar product and an orthogonal basis set.
These are also the key ingredients that we will need in the infinite dimensional case. In fact, we had already done this when we
studied Fourier series.

Recall when we found Fourier trigonometric series representations of functions, we started with a function (vector) that we wanted
to expand in a set of trigonometric functions (basis) and we sought the Fourier coefficients (components). In this section we will
extend our notions from finite dimensional spaces to infinite dimensional spaces and we will develop the needed background in
which to think about more general Fourier series expansions. This conceptual framework is very important in other areas in
mathematics (such as ordinary and partial differential equations) and physics (such as quantum mechanics and electrodynamics).

We will consider various infinite dimensional function spaces. Functions in these spaces would differ by their properties. For
example, we could consider the space of continuous functions on , the space of differentiably continuous functions, or the set
of functions integrable from  to . As you will see, there are many types of function spaces. In order to view these spaces as
vector spaces, we will need to be able to add functions and multiply them by scalars in such as way that they satisfy the definition
of a vector space as defined in Chapter 3.

We will also need a scalar product defined on this space of functions. There are several types of scalar products, or inner products,
that we can define. An inner product ,  on a real vector space  is a mapping from  into  such that for  and 

 one has

1.  and  iff .
2. .
3. .
4. .

A real vector space equipped with the above inner product leads to what is called a real inner product space. For complex inner
product spaces the above properties hold with the third property replaced with .

For the time being, we will only deal with real valued functions and, thus, we will need an inner product appropriate for such
spaces. One such definition is the following. Let  and  be functions defined on  and introduce the weight function 

. Then, we define the inner product, if the integral exists, as

Spaces in which  under this inner product are called the space of square integrable functions on  under weight  and
denoted as . In what follows, we will assume for simplicity that . This is possible to do by using a change of
variables.

Now that we have function spaces equipped with an inner product, we seek a basis for the space. For an -dimensional space we
need  basis vectors. For an infinite dimensional space, how many will we need? How do we know when we have enough? We
will provide some answers to these questions later.

Let’s assume that we have a basis of functions . Given a function , how can we go about finding the components
of  in this basis? In other words, let

How do we find the  ’s? Does this remind you of Fourier series expansions? Does it remind you of the problem we had earlier for
finite dimensional spaces? [You may want to review the discussion at the end of Section ?? as you read the next derivation.]

Formally, we take the inner product of  with each  and use the properties of the inner product to find

{ }ak
n
k=1 V

v ∈ V v =∑
n
k=1 vkak

vk

[0, 1]
a b

⟨ ⟩ V V ×V R u, v,w ∈ V

α ∈ R

⟨v, v⟩ ≥ 0 ⟨v, v⟩ = 0 v= 0
⟨v,w⟩ = ⟨w, v⟩
⟨αv,w⟩ = α⟨v,w⟩

⟨u+v,w⟩ = ⟨u,w⟩+ ⟨v,w⟩

⟨v,w⟩ = ⟨w, v⟩
¯ ¯¯̄¯̄¯̄¯̄¯̄

f(x) g(x) [a, b]
σ(x) > 0

⟨f , g⟩ = f(x)g(x)σ(x)dx.∫
b

a

(5.1.1)

⟨f , f⟩⟨∞ (a, b) σ

(a, b)L2
σ σ(x) = 1

n

n

{ (x)}ϕn
∞
n=1 f(x)

f

f(x) = (x).∑
n=1

∞

cnϕn

cn

f ϕj

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90260?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/05%3A_Non-sinusoidal_Harmonics_and_Special_Functions/5.01%3A_Function_Spaces
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/03%3A_Trigonometric_Fourier_Series


5.1.2 https://math.libretexts.org/@go/page/90260

If the basis is an orthogonal basis, then we have

where  is the Kronecker delta. Recall from Chapter 3 that the Kronecker delta is defined as

For the generalized Fourier series expansion , we have determined the generalized Fourier coefficients
to be .

Continuing with the derivation, we have

Expanding the sum, we see that the Kronecker delta picks out one nonzero term:

So, the expansion coefficients are

We summarize this important result:

Let  be represented by an expansion over a basis of orthogonal functions, ,

Then, the expansion coefficients are formally determined as

This will be referred to as the general Fourier series expansion and the  ’s are called the Fourier coefficients. Technically,
equality only holds when the infinite series converges to the given function on the interval of interest.

Find the coefficients of the Fourier sine series expansion of , given by

⟨ , f⟩ϕj = ⟨ , ⟩ϕj ∑
n=1

∞

cnϕn

= ⟨ , ⟩ .∑
n=1

∞

cn ϕj ϕn (5.1.2)

⟨ , ⟩ = ,ϕj ϕn Njδjn (5.1.3)

δin

={δij
0,
1,

i ≠ j

i = j.
(5.1.4)

 Note

f(x) = (x)∑
∞
n=1 cnϕn

= ⟨ , f⟩/ ⟨ , ⟩cj ϕj ϕj ϕj

⟨ , f⟩ϕj = ⟨ , ⟩∑
n=1

∞

cn ϕj ϕn

=∑
n=1

∞

cnNjδjn (5.1.5)

⟨ , f⟩ϕj = + +… + +…c1Njδj1 c2Njδj2 cjNjδjj

= cjNj (5.1.6)

= = j= 1, 2, …cj
⟨ , f⟩ϕj

Nj

⟨ , f⟩ϕj

⟨ , ⟩ϕj ϕj

 Generalized Basis Expansion

f(x) { (x)}ϕn
∞
n=1

f(x) = (x).∑
n=1

∞

cnϕn

= .cn
⟨ , f⟩ϕn

⟨ , ⟩ϕn ϕn

cj

 Example 5.1.1

f(x)

f(x) = sinnx, x ∈ [−π, π].∑
n=1

∞

bn
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Solution
In the last chapter we already established that the set of functions   for  is orthogonal on the
interval . Recall that using trigonometric identities, we have for 

Therefore, the set  for  is an orthogonal set of functions on the interval .

We determine the expansion coefficients using

Does this result look familiar?

Just as with vectors in three dimensions, we can normalize these basis functions to arrive at an orthonormal basis. This is
simply done by dividing by the length of the vector. Recall that the length of a vector is obtained as . In the same
way, we define the norm of a function by

Note, there are many types of norms, but this induced norm will be sufficient.

For this example, the norms of the basis functions are . Defining , we can normalize the  ’s

and have obtained an orthonormal basis of functions on .

We can also use the normalized basis to determine the expansion coefficients. In this case we have

Footnotes

[1] The norm defined here is the natural, or induced, norm on the inner product space. Norms are a generalization of the concept of
lengths of vectors. Denoting  the norm of , it needs to satisfy the properties.

1. .  if and only if .
2. .
3. .

Examples of common norms are

1. Euclidean norm:

2. Taxicab norm:

3.  norm:
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5.2: Classical Orthogonal Polynomials
There are other basis functions that can be used to develop series representations of functions. In this section we introduce the
classical orthogonal polynomials. We begin by noting that the sequence of functions  is a basis of linearly
independent functions. In fact, by the Stone-Weierstraß Approximation Theorem  this set is a basis of , the space of
square integrable functions over the interval  relative to weight . However, we will show that the sequence of functions 

 does not provide an orthogonal basis for these spaces. We will then proceed to find an appropriate orthogonal basis
of functions.

Suppose  is a continuous function defined on the interval . For every , there exists a polynomial function 
such that for all , we have . Therefore, every continuous function defined on  can be
uniformly approximated as closely as we wish by a polynomial function.

We are familiar with being able to expand functions over the basis  since these expansions are just Maclaurin series
representations of the functions about ,

However, this basis is not an orthogonal set of basis functions. One can easily see this by integrating the product of two even, or
two odd, basis functions with  and . For example,

Since we have found that orthogonal bases have been useful in determining the coefficients for expansions of given functions, we
might ask, "Given a set of linearly independent basis vectors, can one find an orthogonal basis of the given space?" The answer is
yes. We recall from introductory linear algebra, which mostly covers finite dimensional vector spaces, that there is a method for
carrying this out called the Gram-Schmidt Orthogonalization Process. We will review this process for finite dimensional vectors
and then generalize to function spaces.

Let’s assume that we have three vectors that span the usual three dimensional space, , given by , and  and shown in
Figure . We seek an orthogonal basis , and , beginning one vector at a time.

Figure : The basis , and , of .

First we take one of the original basis vectors, say , and define

It is sometimes useful to normalize these basis vectors, denoting such a normalized vector with a "hat":

{1, x, , …}x2

1 (a, b)L2
σ

[a, b] σ(x)
{1, x, , …}x2

 Theorem : Stone-Weierstra  Approximation Theorem5.2.1 β

f [a, b] e > 0 P (x)
x ∈ [a, b] |f(x) −P (x)| < e [a, b]

{1, x, , …x2

x = 0

f(x) ∼ .∑
n=0

∞

cnx
n

σ(x) = 1 (a, b) = (−1, 1)

dx = .∫
1

−1
x0x2 2

3

R3 ,a1 a2 a3

5.2.1 ,e1 e2 e3

5.2.1 ,a1 a2 a3 R3

a1

= .e1 a1
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where .

Next, we want to determine an  that is orthogonal to . We take another element of the original basis, . In Figure  we
show the orientation of the vectors. Note that the desired orthogonal vector is . We can now write  as the sum of  and the
projection of  on . Denoting this projection by , we then have

Figure : A plot of the vectors , and  needed to find the projection of , on .

Recall the projection of one vector onto another from your vector calculus class.

This is easily proven by writing the projection as a vector of length  in direction , where  is the angle between  and 
. Using the definition of the dot product, , the projection formula follows.

Combining Equations - , we find that

It is a simple matter to verify that  is orthogonal to  :

Next, we seek a third vector  that is orthogonal to both  and . Pictorially, we can write the given vector  as a combination
of vector projections along  and  with the new vector. This is shown in Figure . Thus, we can see that

Again, it is a simple matter to compute the scalar products with  and  to verify orthogonality.

=ê1
e1

e1

=e1 ⋅e1 e1
− −−−−√

e2 e1 a2 5.2.2
e2 a2 e2

a2 e1 pr1a2

= − .e2 a2 pr1a2 (5.2.1)

5.2.2 ,e1 a2 e2 a2 e1

= .pr1a2
⋅a2 e1

e2
1

e1 (5.2.2)

cosθa2 ê1 θ e1

a2 a ⋅ b = ab cosθ

(5.2.1) (5.2.2)

= − .e2 a2
⋅a2 e1

e2
1

e1 (5.2.3)

e2 e1

⋅e2 e1 = ⋅ − ⋅a2 e1
⋅a2 e1

e2
1

e1 e1

= ⋅ − ⋅ = 0.a2 e1 a2 e1 (5.2.4)

e3 e1 e2 a3

e1 e2 5.2.3

= − − .e3 a3
⋅a3 e1

e2
1

e1
⋅a3 e2

e2
2

e2 (5.2.5)

e1 e2
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Figure : A plot of vectors for determining .

We can easily generalize this procedure to the -dimensional case. Let  be a set of linearly independent vectors
in . Then, an orthogonal basis can be found by setting  and defining

Now, we can generalize this idea to (real) function spaces. Let , , be a linearly independent sequence
of continuous functions defined for . Then, an orthogonal basis of functions,  can be found and is given by

and

Here we are using inner products relative to weight ,

Note the similarity between the orthogonal basis in  and the expression for the finite dimensional case in Equation .

Apply the Gram-Schmidt Orthogonalization process to the set  , when  and .

Solution
First, we have . Note that

5.2.3 e3

N ,n = 1, … ,Nan

RN =e1 a1

= − , n = 2, 3, … ,Nen an ∑
j=1

n−1 ⋅an ej

e2
j

ej (5.2.6)

(x)fn n ∈ = {0, 1, 2, …}N0

x ∈ [a, b] (x),n ∈ϕn N0

(x) = (x)ϕ0 f0

(x) = (x) − (x), n = 1, 2, … .ϕn fn ∑
j=0

n−1 ⟨ , ⟩fn ϕj

∥ ∥ϕj
2
ϕj (5.2.7)

σ(x)

⟨f , g⟩ = f(x)g(x)σ(x)dx.∫
b

a

(5.2.8)

(5.2.7) (5.2.6)

 Example 5.2.1

(x) =fn ,n ∈xn N0 x ∈ (−1, 1) σ(x) = 1

(x) = (x) = 1ϕ0 f0

(x)dx = 2.∫
1

−1
ϕ2

0
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We could use this result to fix the normalization of the new basis, but we will hold off doing that for now.

Now, we compute the second basis element:

since  is the integral of an odd function over a symmetric interval.

For , we have

So far, we have the orthogonal set . If one chooses to normalize these by forcing , then one obtains
the classical Legendre polynomials, . Thus,

Note that this normalization is different than the usual one. In fact, we see the  does not have a unit norm,

The set of Legendre  polynomials is just one set of classical orthogonal polynomials that can be obtained in this way. Many of
these special functions had originally appeared as solutions of important boundary value problems in physics. They all have similar
properties and we will just elaborate some of these for the Legendre functions in the next section. Others in this group are shown in
Table .

Adrien-Marie Legendre (1752-1833) was a French mathematician who made many contributions to analysis and algebra.

Table : Common classical orthogonal polynomials with the interval and weight function used to define them.
Polynomial Symbol Interval

Hermite

Laguerre

Legendre 1

Gegenbauer

Tchebychef of the 1st kind

Tchebychef of the 2nd kind

Jacobi

(x)ϕ1 = (x) − (x)f1
⟨ , ⟩f1 ϕ0

∥ ∥ϕ0
2
ϕ0

= x− 1 = x,
⟨x, 1⟩

∥1∥2
(5.2.9)

⟨x, 1⟩

(x)ϕ2

(x)ϕ2 = (x) − (x) − (x)f2
⟨ , ⟩f2 ϕ0

∥ ∥ϕ0
2
ϕ0

⟨ , ⟩f2 ϕ1

∥ ∥ϕ1
2
ϕ1

= − 1 − xx2 ⟨ , 1⟩x2

∥1∥2

⟨ , x⟩x2

∥x∥2

= −x2
dx∫ 1

−1 x
2

dx∫ 1
−1

= −x2 1

3
(5.2.10)

{1, x, − }x2 1
3 (1) = 1ϕn

(x)Pn

(x) = (3 −1) .P2
1

2
x2

(x)P2

= (x)dx = .∥ ∥P2
2 ∫

1

−1
P 2

2

2

5

2

5.2.1

 Note

5.2.1

σ(x)

(x)Hn (−∞,∞) e−x2

(x)Lα
n [0,∞) e−x

(x)Pn (−1,1)

(x)Cλ
n (−1,1) (1 − )x2 λ−1/2

(x)Tn (−1,1) (1 − )x2 −1/2

(x)Un (−1,1) (1 − )x2 −1/2

(x)P
(v,μ)
n (−1,1) (1 − x (1 − x)v )μ
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5.3: Fourier-Legendre Series
In the last chapter we saw how useful Fourier series expansions were for solving the heat and wave equations. In Chapter 6 we will
investigate partial differential equations in higher dimensions and find that problems with spherical symmetry may lead to the
series representations in terms of a basis of Legendre polynomials. For example, we could consider the steady state temperature
distribution inside a hemispherical igloo, which takes the form

in spherical coordinates. Evaluating this function at the surface  as , leads to a Fourier-Legendre series
expansion of function  :

where 

In this section we would like to explore Fourier-Legendre series expansions of functions  defined on  :

As with Fourier trigonometric series, we can determine the expansion coefficients by multiplying both sides of Equation  by
 and integrating for . Orthogonality gives the usual form for the generalized Fourier coefficients,

We will later show that

Therefore, the Fourier-Legendre coefficients are

Properties of Legendre Polynomials

We can do examples of Fourier-Legendre Expansions given just a few facts about Legendre polynomials. The first property that the
Legendre polynomials have is the Rodrigues formula:

From the Rodrigues formula, one can show that  is an th degree polynomial. Also, for  odd, the polynomial is an odd
function and for  even, the polynomial is an even function.

Determine  from Rodrigues formula:

Solution

ϕ(r, θ) = (cosθ)∑
n=0

∞

Anr
nPn

r = a ϕ(a, θ) = f(θ)
f

f(θ) = (cosθ),∑
n=0

∞

cnPn

=cn Ana
n

f(x) (−1, 1)

f(x) ∼ (x).∑
n=0

∞

cnPn (5.3.1)

(5.3.1)
(x)Pm x ∈ [−1, 1]

= ,n = 0, 1, …cn
⟨f , ⟩Pn

∥ ∥Pn
2

= .∥ ∥Pn
2 2

2n+1

= f(x) (x)dx.cn
2n+1

2
∫

1

−1
Pn (5.3.2)

(x) = , n ∈ .Pn

1

n!2n
dn

dxn
( −1)x2 n

N0 (5.3.3)

(x)Pn n n

n

 Example 5.3.1

(x)P2
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Note that we get the same result as we found in the last section using orthogonalization.

The first several Legendre polynomials are given in Table . In Figure  we show plots of these Legendre polynomials.

Table : Tabular computation of the Legendre polynomials using the Rodrigues formula.

1 1 1 1

1

2

3

Figure : Plots of the Legendre polynomials , and .

The first proof of the three term recursion formula is based upon the nature of the Legendre polynomials as an orthogonal
basis, while the second proof is derived using generating functions.

All of the classical orthogonal polynomials satisfy a three term recursion formula (or, recurrence relation or formula). In the case of
the Legendre

This can also be rewritten by replacing  with  as

(x)P2 =
1

2!22

d2

dx2
( −1)x2 2

= ( −2 +1)
1

8

d2

dx2
x4 x2

= (4 −4x)
1

8

d

dx
x3

= (12 −4)
1

8
x2

= (3 −1) .
1

2
x2 (5.3.4)

5.3.1 5.3.1

5.3.1

n ( − 1)x
2 n d

n

dxn
( − 1)x

2 n 1
n!2n

(x)Pn

O

− 1x2 2x 1
2

x

− 2 + 1x4 x2 12 − 4x2 1
8

(3 − 1)1
2

x2

− 3 + 3 − 1x6 x4 x2 120 − 72xx3 1
48

(5 − 3x)1
2

x3

5.3.1 (x), (x), (x)P2 P3 P4 (x)P5

 Note

(n+1) (x) = (2n+1)x (x) −n (x), n = 1, 2, … .Pn+1 Pn Pn−1 (5.3.5)

n n−1

(2n−1)x (x) = n (x) +(n−1) (x), n = 1, 2, …Pn−1 Pn Pn−2 (5.3.6)
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Use the recursion formula to find  and , given that  and .

Solution
We first begin by inserting  into Equation :

For , we have

This gives . These expressions agree with the earlier results.

We will prove the three term recursion formula in two ways. First we polynomials, we have use the orthogonality properties of
Legendre polynomials and the following lemma.

The leading coefficient of  in  is .

Proof

We can prove this using the Rodrigues formula. First, we focus on the leading coefficient of , which is . The first
derivative of  is . The second derivative is . The  th derivative is

Thus, the th derivative is given by

This proves that  has degree . The leading coefficient of  can now be written as

Legendre polynomials satisfy the three term recursion formula

Proof

In order to prove the three term recursion formula we consider the expression . While each term
is a polynomial of degree , the leading order terms cancel. We need only look at the coefficient of the leading order term first
expression. It is

 Example 5.3.2

(x)P2 (x)P3 (x) = 1P0 (x) = xP1

n = 1 (5.3.5)

2 (x) = 3x (x) − (x) = 3 −1.P2 P1 P0 x2

n = 2

3 (x)P3 = 5x (x) −2 (x)P2 P1

= x (3 −1)−2x
5

2
x2

= (15 −9x) .
1

2
x3 (5.3.7)

(x) = (5 −3x)P3
1
2 x3

 Lemma 5.3.1

xn (x)Pn
1
n!2n

(2n)!

n!

( −1)x2 n
x2n

x2n 2nx2n−1 2n(2n−1)x2n−2 j

= [2n(2n−1) … (2n−j+1)] . 
djx2n

dxj
x2n−j

n

= [2n(2n−1) … (n+1)] .
dnx2n

dxn
xn

(x)Pn n (x)Pn

[2n(2n−1) … (n+1)]

n!2n
=

[2n(2n−1) … (n+1)]

n!2n
n(n−1) … 1

n(n−1) … 1

=
1

n!2n
(2n)!

n!
(5.3.8)

 Theorem 5.3.1

(2n−1)x (x) = n (x) +(n−1) (x), n = 1, 2, … .Pn−1 Pn Pn−2 (5.3.9)

(2n−1)x (x) −n (x)Pn−1 Pn

n

= = .
2n−1

(n−1)!2n−1

(2n−2)!

(n−1)!

1

(n−1)!2n−1

(2n−1)!

(n−1)!

(2n−1)!

[(n−1)!2n−1 ]2
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The coefficient of the leading term for  can be written as

It is easy to see that the leading order terms in the expression   cancel.

The next terms will be of degree . This is because the  ’s are either even or odd functions, thus only containing even,
or odd, powers of . We conclude that

Therefore, since the Legendre polynomials form a basis, we can write this polynomial as a linear combination of Legendre
polynomials:

Multiplying Equation  by  for , integrating from  to 1 , and using orthogonality, we
obtain

[Note:  for . Thus,  for .]

Thus, all of these  ’s are zero, leaving Equation  as

The final coefficient can be found by using the normalization condition, . Thus, .

Generating Functions The Generating Function for Legendre Polynomials
A second proof of the three term recursion formula can be obtained from the generating function of the Legendre polynomials.
Many special functions have such generating functions. In this case it is given by

This generating function occurs often in applications. In particular, it arises in potential theory, such as electromagnetic or
gravitational potentials. These potential functions are  type functions.

Figure : The position vectors used to describe the tidal force on the Earth due to the moon.

For example, the gravitational potential between the Earth and the moon is proportional to the reciprocal of the magnitude of the
difference between their positions relative to some coordinate system. An even better example, would be to place the origin at the
center of the Earth and consider the forces on the non-pointlike Earth due to the moon. Consider a piece of the Earth at position 
and the moon at position  as shown in Figure . The tidal potential  is proportional to

n (x)Pn

n = n( )( ) .
1

n!2n
(2n)!

n!

2n

2n2

1

(n−1)!2n−1

(2n−1)!

(n−1)!

(2n−1)!

[(n−1)!2n−1 ]2

(2n−1)x (x)−Pn−1 n (x)Pn

n−2 Pn

x

(2n−1)x (x) −n (x) =  polynomial of degree n−2. Pn−1 Pn

(2n−1)x (x) −n (x) = (x) + (x) +… + (x).Pn−1 Pn c0P0 c1P1 cn−2Pn−2 (5.3.10)

(5.3.10) (x)Pm m = 0, 1, … ,n−3 −1

0 = , m = 0, 1, … ,n−3.cm∥ ∥Pm
2

(x)dx = 0∫ 1
−1 x

kPn k ≤ n−1 x (x) (x)dx = 0∫ 1
−1 Pn−1 Pm m ≤ n−3

cm (5.3.10)

(2n−1)x (x) −n (x) = (x).Pn−1 Pn cn−2Pn−2

(1) = 1Pn = (2n−1) −n = n−1cn−2

g(x, t) = = (x) , |x| ≤ 1, |t| < 1.
1

1 −2xt+ t2− −−−−−−−−−√
∑
n=0

∞

Pn tn (5.3.11)

1
r

5.3.2

r1

r2 5.3.2 ϕ

Φ ∝ = =
1

| − |r2 r1

1

( − ) ⋅ ( − )r2 r1 r2 r1
− −−−−−−−−−−−−−−

√

1

−2 cosθ+r2
1 r1r2 r2

2

− −−−−−−−−−−−−−−−
√
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where  is the angle between  and .

Typically, one of the position vectors is much larger than the other. Let’s assume that . Then, one can write

Now, define  and . We then have that the tidal potential is proportional to the generating function for the Legendre
polynomials! So, we can write the tidal potential as

The first term in the expansion, , is the gravitational potential that gives the usual force between the Earth and the moon. [Recall
that the gravitational potential for mass  at distance  from  is given by  and that the force is the gradient of the
potential, .] The next terms will give expressions for the tidal effects.

Now that we have some idea as to where this generating function might have originated, we can proceed to use it. First of all, the
generating function can be used to obtain special values of the Legendre polynomials.

Evaluate  using the generating function.  is found by considering .

Solution
Setting  in Equation , we have

We can use the binomial expansion to find the final answer. Namely, we have

Comparing these expansions, we have the  for  odd and for even integers one can show (see Problem 5.7.12) that

where  is the double factorial,

This example can be finished by first proving that

and

θ r1 r2

≪r1 r2

Φ ∝ = .
1

−2 cosθ+r2
1 r1r2 r2

2

− −−−−−−−−−−−−−−−
√

1

r2

1

1 −2 cosθ+r1

r2
( )r1

r2

2
− −−−−−−−−−−−−−−−

√

x = cosθ t = r1

r2

Φ ∝ (cosθ) .
1

r2
∑
n=0

∞

Pn ( )
r1

r2

n

1
r2

m r M Φ = −GMm
r

F = −∇Φ ∝ ∇ ( )1
r

 Example 5.3.3

(0)Pn (0)Pn g(0, t)

x = 0 (5.3.11)

g(0, t) =
1

1 + t2− −−−−√

= (0)∑
n=0

∞

Pn tn

= (0) + (0)t+ (0) + (0) +… .P0 P1 P2 t2 P3 t3 (5.3.12)

= 1 − + +… .
1

1 + t2− −−−−√

1

2
t2 3

8
t4

(0) = 0Pn n 1

(0) = (−1 ,P2n )n
(2n−1)!!

(2n)!!
(5.3.13)

n!!

n!! = .
⎧

⎩
⎨
⎪

⎪

n(n−2) … (3)1,

n(n−2) … (4)2,

1

n > 0,  odd ,

n > 0,  even ,

n = 0, −1

 Note

(2n)!! = n!2n
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Evaluate . This is a simpler problem.

Solution
In this case we have

Therefore, .

Prove the three term recursion formula,

using the generating function.

Solution
We can also use the generating function to find recurrence relations. To prove the three term recursion  that we
introduced above, then we need only differentiate the generating function with respect to  in Equation  and rearrange
the result. First note that

Combining this with

we have

Inserting the series expression for  and distributing the sum on the right side, we obtain

Multiplying out the  factor and rearranging, leads to three separate sums:

Each term contains powers of  that we would like to combine into a single sum. This is done by reindexing. For the first sum,
we could use the new index . Then, the first sum can be written

(2n−1)!! = = .
(2n)!

(2n)!!

(2n)!

n!2n

 Example 5.3.4

(−1)Pn

g(−1, t) = = = 1 − t+ − +… .
1

1 +2t+ t2− −−−−−−−−√

1

1 + t
t2 t3

(−1) = (−1Pn )n

 Example 5.3.5

(k+1) (x) −(2k+1)x (x) +k (x) = 0, k = 1, 2, … ,Pk+1 Pk Pk−1

(5.3.5)
t (5.3.11)

= = g(x, t).
∂g

∂t

x− t

(1 −2xt+ )t2 3/2

x− t

1 −2xt+ t2

= n (x)
∂g

∂t
∑
n=0

∞

Pn tn−1

(x− t)g(x, t) = (1 −2xt+ ) n (x) .t2 ∑
n=0

∞

Pn tn−1

g(x, t)

(x− t) (x) = n (x) − 2nx (x) + n (x) .∑
n=0

∞

Pn tn ∑
n=0

∞

Pn tn−1 ∑
n=0

∞

Pn tn ∑
n=0

∞

Pn tn+1

x− t

n (x) − (2n+1)x (x) + (n+1) (x) = 0.∑
n=0

∞

Pn tn−1 ∑
n=0

∞

Pn tn ∑
n=0

∞

Pn tn+1 (5.3.14)

t

k = n−1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90262?pdf


5.3.7 https://math.libretexts.org/@go/page/90262

Using different indices is just another way of writing out the terms. Note that

and

actually give the same sum. The indices are sometimes referred to as dummy indices because they do not show up in the
expanded expression and can be replaced with another letter.

If we want to do so, we could now replace all of the  with  ’s. However, we will leave the  s in the first term and now
reindex the next sums in Equation . The second sum just needs the replacement  and the last sum we reindex
using . Therefore, Equation  becomes

We can now combine all of the terms, noting the  term is automatically zero and the  terms give

Of course, we know this already. So, that leaves the  terms:

Since this is true for all , the coefficients of the  ’s are zero, or

While this is the standard form for the three term recurrence relation, the earlier form is obtained by setting .

There are other recursion relations which we list in the box below. Equation  was derived using the generating function.
Differentiating it with respect to , we find Equation . Equation  can be proven using the generating function by
differentiating  with respect to  and rearranging the resulting infinite series just as in this last manipulation. This will be left
as Problem 5.7.4. Combining this result with Equation , we can derive Equations - . Adding and
subtracting these equations yields Equations - .

Table 
Recursion Formulae for Legendre Polynomials for 

n (x) = (k+1) (x) .∑
n=0

∞

Pn tn−1 ∑
k=−1

∞

Pk+1 tk

n (x) = 0 + (x) +2 (x)t+3 (x) +…∑
n=0

∞

Pn tn−1 P1 P2 P3 t2

(k+1) (x) = 0 + (x) +2 (x)t+3 (x) +…∑
k=−1

∞

Pk+1 tk P1 P2 P3 t2

k′ n k′

(5.3.14) n = k

k = n+1 (5.3.14)

(k+1) (x) − (2k+1)x (x) + k (x) = 0.∑
k=−1

∞

Pk+1 tk ∑
k=0

∞

Pk tk ∑
k=1

∞

Pk−1 tk (5.3.15)

k = −1 k = 0

(x) −x (x) = 0.P1 P0 (5.3.16)

k > 0

[(k+1) (x) −(2k+1)x (x) +k (x)] = 0.∑
k=1

∞

Pk+1 Pk Pk−1 tk (5.3.17)

t tk

(k+1) (x) −(2k+1)x (x) +k (x) = 0, k = 1, 2, …Pk+1 Pk Pk−1

k = n−1

(5.3.18)
x (5.3.19) (5.3.20)

g(x, t) x

(5.3.18) (5.3.21) (5.3.22)
(5.3.23) (5.3.24)

5.3.2

n = 1,2,…

(n+ 1) (x) = (2n+ 1)x (x) − n (x)Pn+1 Pn Pn−1 (5.3.18)

(n+ 1) (x) = (2n+ 1)[ (x) + x (x)] − n (x)P ′
n+1 Pn P ′

n P ′
n−1 (5.3.19)

(x) = (x) − 2x (x) + (x)Pn P ′
n+1 P ′

n P ′
n−1 (5.3.20)

(x) = x (x) − n (x)P ′
n−1 P ′

n Pn (5.3.21)

(x) = x (x) + (n+ 1) (x)P ′
n+1 P ′

n Pn (5.3.22)

(x) + (x) = 2x (x) + (x).P ′
n+1 P ′

n−1 P ′
n Pn (5.3.23)
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Recursion Formulae for Legendre Polynomials for 

Finally, Equation  can be obtained using Equations  and . Just multiply Equation  by ,

Now use Equation , but first replace  with  to eliminate the  term:

Rearranging gives the Equation .

Use the generating function to prove

Solution
Another use of the generating function is to obtain the normalization constant. This can be done by first squaring the
generating function in order to get the products , and then integrating over .

Squaring the generating function has to be done with care, as we need to make proper use of the dummy summation index. So,
we first write

Integrating from  to  and using the orthogonality of the Legendre polynomials, we have

However, one can show that

Expanding this expression about , we obtain

Comparing this result with Equation , we find that

n = 1,2,…

(x) − (x) = (2n+ 1) (x).P ′
n+1 P ′

n−1 Pn (5.3.24)

( − 1) (x) = nx (x) − n (x)x2 P ′
n Pn Pn−1 (5.3.25)

(5.3.25) (5.3.21) (5.3.22) (5.3.21) x

(x) −nx (x) = x (x).x2P ′
n Pn P ′

n−1

(5.3.22) n n−1 x (x)P ′
n−1

(x) −nx (x) = (x) −n (x).x2P ′
n Pn P ′

n Pn−1

(5.3.25)

 Example 5.3.6

= (x)dx = .∥ ∥Pn
2 ∫

1

−1
P 2
n

2

2n+1

(x) (x)Pn Pm x

1

1 −2xt+ t2
= [ (x) ]∑

n=0

∞

Pn tn
2

= (x) (x) .∑
n=0

∞

∑
m=0

∞

Pn Pm tn+m (5.3.26)

x = −1 x = 1

∫
1

−1

dx

1 −2xt+ t2
= (x) (x)dx∑

n=0

∞

∑
m=0

∞

tn+m ∫
1

−1
Pn Pm

= (x)dx.∑
n=0

∞

t2n ∫
1

−1
P 2
n (5.3.27)

2

= ln( ).∫
1

−1

dx

1 −2xt+ t2

1

t

1 + t

1 − t

t = 0 3

ln( ) = .
1

t

1 + t

1 − t
∑
n=0

∞ 2

2n+1
t2n

(5.3.27)

= (x)dx = .∥ ∥Pn
2 ∫

1

−1
P 2
n

2

2n+1
(5.3.28)
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You will need the integral

You will need the series expansion

Differential Equation for Legendre Polynomials
The Legendre Polynomials satisfy a second order linear differential equation. This differential equation occurs naturally in the
solution of initialboundary value problems in three dimensions which possess some spherical symmetry. We will see this in the last
chapter. There are two approaches we could take in showing that the Legendre polynomials satisfy a particular differential
equation. Either we can write down the equations and attempt to solve it, or we could use the above properties to obtain the
equation. For now, we will seek the differential equation satisfied by  using the above recursion relations.

We begin by differentiating Equation  and using Equation  to simplify:

Therefore, Legendre polynomials, or Legendre functions of the first kind, are solutions of the differential equation

As this is a linear second order differential equation, we expect two linearly independent solutions. The second solution, called the
Legendre function of the second kind, is given by  and is not well behaved at . For example,

We will not need these for physically interesting examples in this book.

A generalization of the Legendre equation is given by  . Solutions to this

equation,  and , are called the associated Legendre functions of the first and second kind.

Fourier-Legendre Series

With these properties of Legendre Functions we are now prepared to compute the expansion coefficients for the Fourier-Legendre
series representation of a given function.

Expand  in a Fourier-Legendre series.

Solution
We simply need to compute

 Note

∫ = ln(a+bx) +C.
dx

a+bx

1

b

ln(1 +x) = (−1∑
n=1

∞

)n+1 x
n

n

= x− + −⋯
x2

2

x3

3

(x)Pn

(5.3.25) (5.3.21)

(( −1) (x))
d

dx
x2 P ′

n = n (x) +nx (x) −n (x)Pn P ′
n P ′

n−1

= n (x) + (x)Pn n2Pn

= n(n+1) (x)Pn (5.3.29)

(1 − ) −2x +n(n+1)y = 0. x2 y′′ y′

(x)Qn x = ±1

(x) = ln .Q0
1

2

1 +x

1 −x

 Note

(1 − ) −2x +x2 y′′ y′ [n(n+1) − ]y = 0m2

1−x2

(x)P m
n (x)Qm

n

 Example 5.3.7

f(x) = x3
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We first note that

As a result, we have that  for . We could just compute  for  outright by looking up
Legendre polynomials. But, note that  is an odd function.  and .

This leaves us with only two coefficients to compute. We refer to Table  and find that

Thus,

Of course, this is simple to check using Table :

We could have obtained this result without doing any integration. Write  as a linear combination of  and  :

Equating coefficients of like terms, we have that  and .

Oliver Heaviside ( ) was an English mathematician, physicist and engineer who used complex analysis to study
circuits and was a co-founder of vector analysis. The Heaviside function is also called the step function.

Expand the Heaviside  function in a Fourier-Legendre series.

The Heaviside function is defined as

Solution
In this case, we cannot find the expansion coefficients without some integration. We have to compute

= (x)dx.cn
2n+1

2
∫

1

−1
x3Pn (5.3.30)

(x)dx = 0  for m > n.∫
1

−1
xmPn

= 0cn n > 3 (x)dx∫ 1
−1 x

3Pm m = 0, 1, 2, …

x3 So, = 0c0 = 0c2

5.3.1

= dx =c1
3

2
∫

1

−1
x4 3

5

= [ (5 −3x)]dx = .c3
7

2
∫

1

−1
x3 1

2
x3 2

5

= (x) + (x).x3 3

5
P1

2

5
P3

5.3.1

(x) + (x) = x+ [ (5 −3x)]= .
3

5
P1

2

5
P3

3

5

2

5

1

2
x3 x3

x3 (x)P1 (x)P3

x3 = x+ (5 −3x)c1
1

2
c2 x3

=( − )x+ .c1
3

2
c2

5

2
c2x

3 (5.3.31)

=c2
2
5 = =c1

3
2 c2

3
5

 Note

1850 −1925

 Example 5.3.8

3

H(x) ={
1,

0,

x > 0,

x < 0.
(5.3.32)

cn = f(x) (x)dx
2n+1

2
∫

1

−1
Pn

= (x)dx.
2n+1

2
∫

1

0
Pn (5.3.33)
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We can make use of identity ,

We have for 

For , we have

This leads to the expansion

We still need to evaluate the Fourier-Legendre coefficients

Since  for  odd, the ’s vanish for  even. Letting , we re-index the sum, obtaining

We can compute the nonzero Fourier coefficients, , using a result from Problem 12:

Namely, we have

Thus, the Fourier-Legendre series expansion for the Heaviside function is given by

The sum of the first 21 terms of this series are shown in Figure . We note the slow convergence to the Heaviside function.
Also, we see that the Gibbs phenomenon is present due to the jump discontinuity at . [See Section 3.7.]

(5.3.24)

(x) − (x) = (2n+1) (x), n > 0.P ′
n+1 P ′

n−1 Pn (5.3.34)

n > 0

= [ (x) − (x)]dx = [ (0) − (0)].cn
1

2
∫

1

0
P ′
n+1 P ′

n−1

1

2
Pn−1 Pn+1

n = 0

= dx = .c0
1

2
∫

1

0

1

2

f(x) ∼ + [ (0) − (0)] (x).
1

2

1

2
∑
n=1

∞

Pn−1 Pn+1 Pn

= [ (0) − (0)].cn
1

2
Pn−1 Pn+1

(0) = 0Pn n cn n n = 2k−1

f(x) ∼ + [ (0) − (0)] (x).
1

2

1

2
∑
n=1

∞

P2k−2 P2k P2k−1

= [ (0) − (0)]c2k−1
1
2 P2k−2 P2k

(0) = (−1 .P2k )k
(2k−1)!!

(2k)!!
(5.3.35)

c2k−1 = [ (0) − (0)]
1

2
P2k−2 P2k

= [(−1 −(−1 ]
1

2
)k−1 (2k−3)!!

(2k−2)!!
)k

(2k−1)!!

(2k)!!

= − (−1 [1 + ]
1

2
)k

(2k−3)!!

(2k−2)!!

2k−1

2k

= − (−1 .
1

2
)k

(2k−3)!!

(2k−2)!!

4k−1

2k
(5.3.36)

f(x) ∼ − (−1 (x).
1

2

1

2
∑
n=1

∞

)n
(2n−3)!!

(2n−2)!!

4n−1

2n
P2n−1 (5.3.37)

5.3.3
x = 0
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Figure : Sum of first 21 terms for Fourier-Legendre series expansion of Heaviside function.

This page titled 5.3: Fourier-Legendre Series is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.4: Gamma Function
A function that often occurs in the study of special functions is the Gamma function. We will need the Gamma function in the
next section on Fourier-Bessel series.

The name and symbol for the Gamma function were first given by Legendre in 1811. However, the search for a generalization
of the factorial extends back to the 1720’s when Euler provided the first representation of the factorial as an infinite product,
later to be modified by others like Gauß, Weierstraß, and Legendre.

For  we define the Gamma function as

The Gamma function is a generalization of the factorial function and a plot is shown in Figure . In fact, we have

and

The reader can prove this identity by simply performing an integration by parts. (See Problem 5.7.7.) In particular, for integers 
, we then have

Figure : Plot of the Gamma function.

We can also define the Gamma function for negative, non-integer values of . We first note that by iteration on , we have

Solving for , we then find

Note that the Gamma function is undefined at zero and the negative integers.

 Note

x >

Γ(x) = dt, x > 0.∫
∞

0
tx−1e−t (5.4.1)

5.4.1

Γ(1) = 1

Γ(x+1) = xΓ(x).

n ∈ Z+

Γ(n+1) = nΓ(n) = n(n−1)Γ(n−2) = n(n−1) ⋯ 2Γ(1) = n!.

5.4.1

x n ∈ Z+

Γ(x+n) = (x+n−1) ⋯ (x+1)xΓ(x), x+n > 0.

Γ(x)

Γ(x) = , −n < x < 0
Γ(x+n)

(x+n−1) ⋯ (x+1)x′
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We now prove that

Solution
This is done by direct computation of the integral:

Letting , we have

Due to the symmetry of the integrand, we obtain the classic integral

which can be performed using a standard trick.  Consider the integral

Then,

Note that we changed the integration variable. This will allow us to write this product of integrals as a double integral:

This is an integral over the entire -plane. We can transform this Cartesian integration to an integration over polar
coordinates. The integral becomes

This is simple to integrate and we have . So, the final result is found by taking the square root of both sides.

In Example 9.5 we show the more general result:

In Problem 5.7.12 the reader will prove the identity

 Example 5.4.1

Γ( ) = . 
1

2
π−−√

Γ( ) = dt.
1

2
∫

∞

0
t− 1

2 e−t

t = z2

Γ( ) = 2 dz.
1

2
∫

∞

0
e−z2

Γ( ) = dz,
1

2
∫

∞

−∞
e−z2

1

I = dx.∫
∞

−∞
e−x2

= dx dy.I 2 ∫
∞

−∞
e−x2

∫
∞

−∞
e−y2

= dxdy.I 2 ∫
∞

−∞
∫

∞

−∞
e−( + )x2 y2

xy

= rdrdθI 2 ∫
2π

0
∫

∞

0
e−r2

= πI 2

Γ( ) = I = .
1

2
π−−√

 Note

dy =∫
∞

−∞
e−βy2 π

β

−−
√

Γ(n+ ) = .
1

2

(2n−1)!!

2n
π−−√

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90945?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/05%3A_Non-sinusoidal_Harmonics_and_Special_Functions/5.07%3A_Problems#Ex12


5.4.3 https://math.libretexts.org/@go/page/90945

Another useful relation, which we only state, is

The are many other important relations, including infinite products, which we will not need at this point. The reader is encouraged
to read about these elsewhere. In the meantime, we move on to the discussion of another important special function in physics and
mathematics.

This page titled 5.4: Gamma Function is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.5: Fourier-Bessel Series
Bessel functions arise in many problems in physics possessing cylindrical symmetry such as the vibrations of circular drumheads
and the radial modes in optical fibers. They also provide us with another orthogonal set of basis functions.

The first occurrence of Bessel functions (zeroth order) was in the work of Daniel Bernoulli on heavy chains (1738). More general
Bessel functions were studied by Leonhard Euler in 1781 and in his study of the vibrating membrane in 1764 . Joseph Fourier
found them in the study of heat conduction in solid cylinders and Siméon Poisson (1781-1840) in heat conduction of spheres
(1823).

Bessel functions have a long history and were named after Friedrich Wilhelm Bessel (1784-1846).

The history of Bessel functions, does not just originate in the study of the wave and heat equations. These solutions originally came
up in the study of the Kepler problem, describing planetary motion. According to G. N. Watson in his Treatise on Bessel Functions,
the formulation and solution of Kepler’s Problem was discovered by Joseph-Louis Lagrange (1736-1813), in 1770. Namely, the
problem was to express the radial coordinate and what is called the eccentric anomaly, , as functions of time. Lagrange found
expressions for the coefficients in the expansions of  and  in trigonometric functions of time. However, he only computed the
first few coefficients. In 1816 Friedrich Wilhelm Bessel (1784-1846) had shown that the coefficients in the expansion for  could
be given an integral representation. In 1824 he presented a thorough study of these functions, which are now called Bessel
functions.

You might have seen Bessel functions in a course on differential equations as solutions of the differential equation

Solutions to this equation are obtained in the form of series expansions. Namely, one seeks solutions of the form

by determining the for the coefficients must take. We will leave this for a homework exercise and simply report the results.

One solution of the differential equation is the Bessel function of the first kind of order , given as

Figure : Plots of the Bessel functions , and .

 Note

E

r E

r

+x +( − )y = 0.x2y′′ y′ x2 p2 (5.5.1)

y(x) =∑
j=0

∞

ajx
j+n

p

y(x) = (x) = .Jp ∑
n=0

∞ (−1)n

Γ(n+1)Γ(n+p+1)
( )
x

2

2n+p

(5.5.2)

5.5.1 (x), (x), (x)J0 J1 J2 (x)J3
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In Figure  we display the first few Bessel functions of the first kind of integer order. Note that these functions can be
described as decaying oscillatory functions.

A second linearly independent solution is obtained for  not an integer as . However, for  an integer, the 
factor leads to evaluations of the Gamma function at zero, or negative integers, when  is negative. Thus, the above series is not
defined in these cases.

Another method for obtaining a second linearly independent solution is through a linear combination of  and  as

These functions are called the Neumann functions, or Bessel functions of the second kind of order .

In Figure  we display the first few Bessel functions of the second kind of integer order. Note that these functions are also
decaying oscillatory functions. However, they are singular at .

Figure : Plots of the Neumann functions , and .

In many applications one desires bounded solutions at . These functions do not satisfy this boundary condition. For example,
we will later study one standard problem is to describe the oscillations of a circular drumhead. For this problem one solves the two
dimensional wave equation using separation of variables in cylindrical coordinates. The radial equation leads to a Bessel equation.
The Bessel function solutions describe the radial part of the solution and one does not expect a singular solution at the center of the
drum. The amplitude of the oscillation must remain finite. Thus, only Bessel functions of the first kind can be used.

Bessel functions satisfy a variety of properties, which we will only list at this time for Bessel functions of the first kind. The reader
will have the opportunity to prove these for homework.

Derivative Identities
These identities follow directly from the manipulation of the series solution.

Recursion Formulae

The next identities follow from adding, or subtracting, the derivative identities.

5.5.1

p (x)J−p p Γ(n+p+1)
p

(x)Jp (x)J−p

(x) = (x) = .Np Yp
cosπp (x) − (x)Jp J−p

sinπp
(5.5.3)

p

5.5.2
x = 0

5.5.2 (x), (x), (x)N0 N1 N2 (x)N3

x = 0

[ (x)]
d

dx
xpJp

[ (x)]
d

dx
x−pJp

= (x).xpJp−1

= − (x).x−pJp+1

(5.5.4)

(5.5.5)

(x) + (x) = (x).Jp−1 Jp+1
2p

x
Jp

(x) − (x) = 2 (x).Jp−1 Jp+1 J ′
p

(5.5.6)

(5.5.7)
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Orthogonality
As we will see in the next chapter, one can recast the Bessel equation into an eigenvalue problem whose solutions form an
orthogonal basis of functions on . Using Sturm-Liouville theory, one can show that

where  is the th root of . A list of some of these roots are provided in Table .

Generating Function

Table : The zeros of Bessel Functions, 

1

2

3

4

5

6

7

8

9

Integral Representation

Fourier-Bessel Series
Since the Bessel functions are an orthogonal set of functions of a SturmLiouville problem, we can expand square integrable
functions in this basis. In fact, the Sturm-Liouville problem is given in the form

satisfying the boundary conditions:  is bounded at  and  0 . The solutions are then of the form , as can
be shown by making the substitution  in the differential equation. Namely, we let  and note that

Then,

which has a solution .

In the study of boundary value problems in differential equations, SturmLiouville problems are a bountiful source of basis
functions for the space of square integrable functions as will be seen in the next section.

(0, a)L2
x

x ( ) ( )dx = ,∫
a

0
Jp jpn

x

a
Jp jpm

x

a

a2

2
[ ( )]Jp+1 jpn

2δn,m (5.5.8)

jpn n (x), ( ) = 0,n = 1, 2, …Jp Jp jpn 5.5.1

= (x) , x > 0, t ≠ 0.e
x(t− )/21

t ∑
n=−∞

∞

Jn tn (5.5.9)

5.5.1 ( ) = 0.Jm jmn

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

2.405 3.832 5.136 6.380 7.588 8.771

5.520 7.016 8.417 9.761 11.065 12.339

8.654 10.173 11.620 13.015 14.373 15.700

11.792 13.324 14.796 16.223 17.616 18.980

14.931 16.471 17.960 19.409 20.827 22.218

18.071 19.616 21.117 22.583 24.019 25.430

21.212 22.760 24.270 25.748 27.199 28.627

24.352 25.904 27.421 28.908 30.371 31.812

27.493 29.047 30.569 32.065 33.537 34.989

(x) = cos(x sinθ−nθ)dθ, x > 0,n ∈ Z.Jn
1

π
∫

π

0
(5.5.10)

+x +(λ − )y = 0, x ∈ [0, a],x2y′′ y′ x2 p2 (5.5.11)

y(x) x = 0 y(a) = ( x)Jp λ
−−

√

t = xλ
−−

√ y(x) = u(t)

= = .
dy

dx

dt

dx

du

dt
λ
−−

√
du

dt

+ t +( − )u = 0,t2u′′ u′ t2 p2

u(t) = (t)Jp

 Note
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Using Sturm-Liouville theory, one can show that  is a basis of eigenfunctions and the resulting Fourier-Bessel series
expansion of  defined on  is

where the Fourier-Bessel coefficients are found using the orthogonality relation as

Expand  for  in a Fourier-Bessel series of the form

Solution
We need only compute the Fourier-Bessel coefficients in Equation :

From the identity

we have

( )Jp jpn
x

a

f(x) x ∈ [0, a]

f(x) = ( ) ,∑
n=1

∞

cnJp jpn
x

a
(5.5.12)

= xf(x) ( )dx.cn
2

a2 [ ( )]Jp+1 jpn
2
∫

a

0
Jp jpn

x

a
(5.5.13)

 Example 5.5.1

f(x) = 1 0 < x < 1

f(x) = ( x)∑
n=1

∞

cnJ0 j0n

(5.5.13)

= x ( x)dxcn
2

[ ( )]J1 j0n
2
∫

1

0
J0 j0n (5.5.14)

[ (x)] = (x).
d

dx
xpJp xpJp−1 (5.5.15)

x ( x)dx∫
1

0
J0 j0n = y (y)dy

1

j2
0n

∫
j0n

0
J0

= [y (y)] dy
1

j2
0n

∫
j0n

0

d

dy
J1

=
1

j2
0n

[y (y)]J1
j0n

0

= ( )
1

j0n
J1 j0n (5.5.16)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90946?pdf


5.5.5 https://math.libretexts.org/@go/page/90946

Figure : Plot of the first 50 terms of the Fourier-Bessel series in Equation  for  on .

As a result, the desired Fourier-Bessel expansion is given as

In Figure  we show the partial sum for the first fifty terms of this series. Note once again the slow convergence due to the
Gibbs phenomenon.

This page titled 5.5: Fourier-Bessel Series is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

5.5.3 (5.5.17) f(x) = 1 0 < x < 1

1 = 2 , 0 < x < 1∑
n=1

∞ ( x)J0 j0n

( )j0nJ1 j0n
(5.5.17)

5.5.3
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5.6: Appendix- The Least Squares Approximation
In the first section of this chapter we showed that we can expand functions over an infinite set of basis functions as

and that the generalized Fourier coefficients are given by

In this section we turn to a discussion of approximating  by the partial sums  and showing that the Fourier
coefficients are the best coefficients minimizing the deviation of the partial sum from . This will lead us to a discussion of the
convergence of Fourier series.

More specifically, we set the following goal:

To find the best approximation of  on  by  for a set of fixed functions ; i.e., to find the
expansion coefficients, , such that  approximates  in the least squares sense.

We want to measure the deviation of the finite sum from the given function. Essentially, we want to look at the error made in the
approximation. This is done by introducing the mean square deviation:

where we have introduced the weight function . It gives us a sense as to how close the  th partial sum is to .

We want to minimize this deviation by choosing the right  ’s. We begin by inserting the partial sums and expand the square in the
integrand:

Looking at the three resulting integrals, we see that the first term is just the inner product of  with itself. The other integrations can
be rewritten after interchanging the order of integration and summation. The double sum can be reduced to a single sum using the
orthogonality of the  ’s. Thus, we have

We are interested in finding the coefficients, so we will complete the square in . Focusing on the last two terms, we have

f(x) = (x)∑
n=1

∞

cnϕn

= .cn
⟨ , f⟩ϕn

⟨ , ⟩ϕn ϕn

f(x) (x)∑N
n=1 cnϕn

f(x)

 Goal

f(x) [a, b] (x) = (x)SN ∑N
n=1 cnϕn (x)ϕn

cn (x)SN f(x)

= ρ(x)dx,EN ∫
b

a

[f(x) − (x)]SN
2

ρ(x) > 0 N f(x)

cn

=EN

=

=

ρ(x)dx∫
b

a

[f(x) − (x)]SN
2

ρ(x)dx∫
b

a

[f(x) − (x)]∑
n=1

N

cnϕn

2

(x)ρ(x)dx−2 f(x) (x)ρ(x)dx∫
b

a

f 2 ∫
b

a

∑
n=1

N

cnϕn

+ (x) (x)ρ(x)dx∫
b

a

∑
n=1

N

cnϕn ∑
m=1

N

cmϕm (5.6.1)

f

ϕn

EN = ⟨f , f⟩−2 ⟨f , ⟩+ ⟨ , ⟩∑
n=1

N

cn ϕn ∑
n=1

N

∑
m=1

N

cncm ϕn ϕm

= ⟨f , f⟩−2 ⟨f , ⟩+ ⟨ , ⟩ .∑
n=1

N

cn ϕn ∑
n=1

N

c2
n ϕn ϕn (5.6.2)

cn
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To this point we have shown that the mean square deviation is given as

So,  is minimized by choosing

However, these are the Fourier Coefficients. This minimization is often referred to as Minimization in Least Squares Sense.

Inserting the Fourier coefficients into the mean square deviation yields

Thus, we obtain Bessel’s Inequality:

For convergence, we next let  get large and see if the partial sums converge to the function. In particular, we say that the infinite
series converges in the mean if

Letting  get large in Bessel's inequality shows that the sum  converges if

The space of all such  is denoted , the space of square integrable functions on  with weight .

From the th term divergence test from calculus we know that  converges implies that  as . Therefore, in this
problem the terms  approach zero as  gets large. This is only possible if the  ’s go to zero as  gets large. Thus,

if  converges in the mean to , then  approaches zero as . This implies from

the above derivation of Bessel’s inequality that

This leads to Parseval’s equality:

=

=

=

−2 < f , > + < , >∑
n=1

N

cn ϕn ∑
n=1

N

c2
n ϕn ϕn

< , > −2 < f , >∑
n=1

N

ϕn ϕn c2
n ϕn cn

< , > [ − ]∑
n=1

N

ϕn ϕn c2
n

2 < f , >ϕn cn

⟨ , ⟩ϕn ϕn

< , > [ − ] .∑
n=1

N

ϕn ϕn ( − )cn
⟨f , ⟩ϕn

⟨ , ⟩ϕn ϕn

2

( )
⟨f , ⟩ϕn

< , >ϕn ϕn

2

(5.6.3)

= ⟨f , f⟩+ ⟨ , ⟩[ − ] .EN ∑
n=1

N

ϕn ϕn ( − )cn
⟨f , ⟩ϕn

⟨ , ⟩ϕn ϕn

2

( )
⟨f , ⟩ϕn

⟨ , ⟩ϕn ϕn

2

EN

= .cn
⟨f , ⟩ϕn

⟨ , ⟩ϕn ϕn

0 ≤ = ⟨f , f⟩− ⟨ , ⟩ .EN ∑
n=1

N

c2
n ϕn ϕn

< f , f >≥ < , >.∑
n=1

N

c2
n ϕn ϕn

N

ρ(x)dx → 0 as N → ∞.∫
b

a

[f(x) − (x)]SN
2

N < , >∑N

n=1 c
2
n ϕn ϕn

< f , f >= (x)ρ(x)dx < ∞.∫
b

a

f 2

f (a, b)L2
ρ (a, b) ρ(x)

n ∑an → 0an n → ∞
< , >c2

n ϕn ϕn n cn n

∑N
n=1 cnϕn f ρ(x)dx∫ b

a
[f(x) − ]∑N

n=1 cnϕn

2
N → ∞

< f , f > − ( , ) → 0.∑
n=1

N

c2
n ϕn ϕn

⟨f , f⟩ = ⟨ , ⟩ .∑
n=1

∞

c2
n ϕn ϕn
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Parseval’s equality holds if and only if

If this is true for every square integrable function in , then the set of functions  is said to be complete. One can
view these functions as an infinite dimensional basis for the space of square integrable functions on  with weight .

One can extend the above limit  as , by assuming that  is uniformly bounded and that .

This is the RiemannLebesgue Lemma, but will not be proven here.

This page titled 5.6: Appendix- The Least Squares Approximation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

ρ(x)dx = 0.lim
N→∞

∫
b

a

(f(x) − (x))∑
n=1

N

cnϕn

2

(a, b)L2
ρ { (x)}ϕn

∞
n=1

(a, b) ρ(x) > 0

→ 0cn n → ∞
(x)ϕn

∥ ∥ϕn

|f(x)|ρ(x)dx < ∞∫ b

a
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5.7: Problems

Consider the set of vectors .

a. Use the Gram-Schmidt process to find an orthonormal basis for  using this set in the given order.
b. What do you get if you do reverse the order of these vectors?

Use the Gram-Schmidt process to find the first four orthogonal polynomials satisfying the following:

a. Interval:  Weight Function: .
b. Interval:  Weight Function: .

Find  using

a. The Rodrigues’ Formula in Equation (5.3.3).
b. The three term recursion formula in Equation (5.3.5).

In Equations (5.3.18)-(5.3.25) we provide several identities for Legendre polynomials. Derive the results in Equations (5.3.19)-
(5.3.25) as described in the text. Namely,

a. Differentiating Equation (5.3.18) with respect to , derive Equation (5.3.19).
b. Derive Equation (5.3.20) by differentiating  with respect to  and rearranging the resulting infinite series.
c. Combining the last result with Equation (5.3.18), derive Equations (5.3.21)-(5.3.22).
d. Adding and subtracting Equations (5.3.21)-(5.3.22), obtain Equations (5.3.23)-(5.3.24).
e. Derive Equation (5.3.25) using some of the other identities.

Use the recursion relation (5.3.5) to evaluate .

Expand the following in a Fourier-Legendre series for .

a. .
b. .

c. 

d. 

Use integration by parts to show .

 Exercise 5.7.1

(−1, 1, 1), (1, −1, 1), (1, 1, −1)

R3

 Exercise 5.7.2

(−∞, ∞) e−x2

(0, ∞) e−x

 Exercise 5.7.3

(x)P4

 Exercise 5.7.4

x

g(x, t) x

 Exercise 5.7.5

x (x) (x)dx,n ≤ m∫ 1
−1 Pn Pm

 Exercise 5.7.6

x ∈ (−1, 1)

f(x) = x2

f(x) = 5 +2 −x+3x4 x3

f(x) ={
−1,

1,

−1 < x < 0,

0 < x < 1.

f(x) ={
x,

0,

−1 < x < 0,

0 < x < 1.

 Exercise 5.7.7

Γ(x+1) = xΓ(x)
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Prove the double factorial identities:

and

Express the following as Gamma functions. Namely, noting the form  and using an appropriate
substitution, each expression can be written in terms of a Gamma function.

a. .
b. 
c. 

The coefficients  in the binomial expansion for  are given by

a. Write  in terms of Gamma functions.
b. For  use the properties of Gamma functions to write  in terms of factorials.
c. Confirm you answer in part  by deriving the Maclaurin series expansion of .

The Hermite polynomials, , satisfy the following:

i. .
ii. .

iii. .

iv. .

Using these, show that

a. . [Use properties ii. and iii.]
b. . [Use properties i. and iii.]

c.  [Let  in iii. and iterate. Note from iv. that  and . ]

In Maple one can type simplify(LegendreP -LegendreP  ); to find a value for . It gives
the result in terms of Gamma functions. However, in Example 5.3.8 for Fourier-Legendre series, the value is given in terms of
double factorials! So, we have

You will verify that both results are the same by doing the following:

 Exercise 5.7.8

(2n)!! = n!2n

(2n−1)!! = .
(2n)!

n!2n

 Exercise 5.7.9

Γ(x+1) = dt∫ ∞
0 txe−t

dx∫
∞

0 x2/3e−x

dx∫ ∞
0 x5e−x2

dx∫ 1
0 [ln( )]1

x

n

 Exercise 5.7.10

C p

k
(1 +x)p

= .C
p

k

p(p−1) ⋯ (p−k+1)

k!

C
p

k

p = 1/2 C
1/2
k

b (1 +x)1/2

 Exercise 5.7.11

(x)Hn

⟨ , ⟩ = (x) (x)dx = n!Hn Hm ∫ ∞
−∞ e−x2

Hn Hm π−−√ 2n δn,m

(x) = 2n (x)H ′
n Hn−1

(x) = 2x (x) −2n (x)Hn+1 Hn Hn−1

(x) = (−1 ( )Hn )nex
2 dn

dxn
e−x2

−2x +2n = 0H ′′
n H ′

n Hn

x (x) (x)dx = n! [ +2(n+1) ]∫ ∞
−∞ e−x2

Hn Hm π−−√ 2n−1 δm,n−1 δm,n+1

(0) = {Hn

0,

(−1 ,)m
(2m)!

m!

n odd, 

n = 2m.
x = 0 (x) = 1H0 (x) = 2xH1

 Exercise 5.7.12
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a. Prove that  using the generating function and a binomial expansion.

b. Prove that  using  and iteration.

c. Verify the result from Maple that .

d. Can either expression for  be simplified further?

A solution Bessel’s equation, , can be found using the guess . One
obtains the recurrence relation . Show that for  we get the Bessel function of the first kind of

order  from the even values  :

Use the infinite series in the last problem to derive the derivative identities (5.5.15) and (5.5.5):

a. 
b. 

Prove the following identities based on those in the last problem.

a. .
b. .

Use the derivative identities of Bessel functions, (5.5.15)-(5.5.5), and integration by parts to show that

Use the generating function to find  and .

Bessel functions  are solutions of . Assume that  and that  and 
 is finite.

a. Show that this equation can be written in the form

This is the standard Sturm-Liouville form for Bessel’s equation.
b. Prove that

(0) = (−1P2n )n
(2n−1)!!

(2n)!!

Γ(n+ ) =1
2

(2n−1)!!

2n
π−−√ Γ(x) = (x−1)Γ(x−1)

(0) − (0) =P2n−2 P2n
(4n−1)π√

2Γ(n+1)Γ( −n)3
2

(0) − (0)P2n−2 P2n

 Exercise 5.7.13
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aj−2 =a0 (n! )2n −1

n j= 2k

(x) = .Jn ∑
k=0

∞ (−1)k

k!(n+k)!
( )
x

2

n+2k

 Exercise 5.7.14

[ (x)] = (x).d

dx
xnJn xnJn−1

[ (x)] = − (x).d

dx
x−nJn x−nJn+1

 Exercise 5.7.15

(x) + (x) = (x)Jp−1 Jp+1
2p
x Jp

(x) − (x) = 2 (x)Jp−1 Jp+1 J ′
p

 Exercise 5.7.16

∫ (x)dx = (x) −2 (x) +C.x3J0 x3J1 x2J2

 Exercise 5.7.17

(0)Jn (0)J ′
n

 Exercise 5.7.18

(λx)Jp +x +( − )y = 0x2y′′ y′ λ2x2 p2 x ∈ (0, 1) (λ) = 0Jp
(0)Jp
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dx
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dx
λ2 p2
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by considering

Thus, the solutions corresponding to different eigenvalues  are orthogonal.
c. Prove that

We can rewrite Bessel functions, , in a form which will allow the order to be non-integer by using the gamma function.
You will need the results from Problem b for .

a. Extend the series definition of the Bessel function of the first kind of order , for  by writing the series
solution for  in Problem  using the gamma function.

b. Extend the series to , for . Discuss the resulting series and what happens when  is a positive integer.
c. Use these results to obtain the closed form expressions

d. Use the results in part  with the recursion formula for Bessel functions to obtain a closed form for .

In this problem you will derive the expansion

where the  are the positive roots of , by following the below steps.

a. List the first five values of  for  using the Table 5.5.1 and Figure 5.5.1. [Note: Be careful determining .]
b. Show that . Recall,

c. Show that . (This is the most involved step.) First note from Problem 
that  is a solution of

i. Verify the Sturm-Liouville form of this differential equation: 
ii. Multiply the equation in part i. by  and integrate from  to  to obtain

iii. Noting that , integrate the left hand side by parts and use the following to simplify the resulting
equation.

[ (μx) (x (λx))− (λx) (x (μx))]dx.∫
1

0
Jp

d

dx

d

dx
Jp Jp

d

dx

d

dx
Jp

(λ,μ)

x dx = (λ) = (λ).∫
1

0
[ (λx)]Jp

2 1

2
J 2
p+1

1

2
J ′2
p

 Exercise 5.7.19

(x)Jv

5.7.12 Γ(k+ )1
2

v, (x)Jv v≥ 0
y(x) 5.7.13

(x)J−v v≥ 0 v

(x) = sinx,J1/2
2

πx

−−−
√

(x) = cosx.J−1/2
2

πx

−−−
√

c (x)J3/2

 Exercise 5.7.20

= +4 , 0 < x < c,x2 c2

2
∑
j=2

∞ ( x)J0 αj

( c)α2
jJ0 αj

sα′
j (αc) = 0J1

α (αc) = 0J1 α1

=∥ ( x)∥J0 α1
2 c2

2

= x ( x)dx.∥ ( x)∥J0 αj
2 ∫

c

0
J 2

0 αj

= , j= 2, 3, …∥ ( x)∥J0 αj
2 c2
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jx
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α2
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1.  from Equation (5.5.5).
2. Equation (5.5.8).
3.  from Equation (5.5.6).

iv. Now you should have enough information to complete this part.
d. Use the results from parts b and c and Problem  to derive the expansion coefficients for

in order to obtain the desired expansion.

This page titled 5.7: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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CHAPTER OVERVIEW

6: Problems in Higher Dimensions

"Equations of such complexity as are the equations of the gravitational field can be found
only through the discovery of a logically simple mathematical condition that determines
the equations completely or at least almost completely."

"What I have to say about this book can be found inside this book."

~ Albert Einstein (1879-1955)

In this chapter we will explore several examples of the solution of initial-boundary value problems involving higher spatial
dimensions. These are described by higher dimensional partial differential equations, such as the ones presented in Table 2.1.1 in
Chapter 2. The spatial domains of the problems span many different geometries, which will necessitate the use of rectangular,
polar, cylindrical, or spherical coordinates.

We will solve many of these problems using the method of separation of variables, which we first saw in Chapter 2. Using
separation of variables will result in a system of ordinary differential equations for each problem. Adding the boundary conditions,
we will need to solve a variety of eigenvalue problems. The product solutions that result will involve trigonometric or some of the
special functions that we had encountered in Chapter 5. These methods are used in solving the hydrogen atom and other problems
in quantum mechanics and in electrostatic problems in electrodynamics. We will bring to this discussion many of the tools from
earlier in this book showing how much of what we have seen can be used to solve some generic partial differential equations which
describe oscillation and diffusion type problems.

As we proceed through the examples in this chapter, we will see some common features. For example, the two key equations that
we have studied are the heat equation and the wave equation. For higher dimensional problems these take the form

We can separate out the time dependence in each equation. Inserting a guess of  into the heat and wave
equations, we obtain

The Helmholtz equation is named after Hermann Ludwig Ferdinand von Helmholtz (1821-1894). He was both a physician and
a physicist and made significant contributions in physiology, optics, acoustics, and electromagnetism.

Dividing each equation by , we can separate the time and space dependence just as we had in Chapter ??. In each case we
find that a function of time equals a function of the spatial variables. Thus, these functions must be constant functions. We set these
equal to the constant  and find the respective equations

The sign of  is chosen because we expect decaying solutions in time for the heat equation and oscillations in time for the wave
equation and will pick .

The respective equations for the temporal functions  are given by

ut

utt

= k u,∇2

= u.c2∇2

(6.1)

(6.2)

u(r, t) = ϕ(r)T (t)

ϕ = kT ϕ, T ′ ∇2 (6.3)

ϕ = T ϕ.T ′′ c2 ∇2 (6.4)

 Note

ϕ(r)T (t)

−λ

1

k

T ′

T

1

c2

T ′′

T

= = −λ
ϕ∇2

ϕ

= = −λ
ϕ∇2

ϕ

(6.5)

(6.6)

λ

λ > 0

T (t)
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2

These are easily solved as we had seen in Chapter ??. We have

where , and  are integration constants and  is the angular frequency of vibration.

In both cases the spatial equation is of the same form,

This equation is called the Helmholtz equation. For one dimensional problems, which we have already solved, the Helmholtz
equation takes the form . We had to impose the boundary conditions and found that there were a discrete set of
eigenvalues, , and associated eigenfunctions, .

In higher dimensional problems we need to further separate out the spatial dependence. We will again use the boundary conditions
to find the eigenvalues, , and eigenfunctions, , for the Helmholtz equation, though the eigenfunctions will be labeled with
more than one index. The resulting boundary value problems are often second order ordinary differential equations, which can be
set up as Sturm-Liouville problems. We know from Chapter 5 that such problems possess an orthogonal set of eigenfunctions.
These can then be used to construct a general solution from the product solutions which may involve elementary, or special,
functions, such as Legendre polynomials and Bessel functions.

We will begin our study of higher dimensional problems by considering the vibrations of two dimensional membranes. First we
will solve the problem of a vibrating rectangular membrane and then we will turn our attention to a vibrating circular membrane.
The rest of the chapter will be devoted to the study of other two and three dimensional problems possessing cylindrical or spherical
symmetry.

6.1: Vibrations of Rectangular Membranes
6.2: Vibrations of a Kettle Drum
6.3: Laplace’s Equation in 2D
6.4: Three Dimensional Cake Baking
6.5: Laplace’s Equation and Spherical Symmetry
6.6: Spherically Symmetric Vibrations
6.7: Baking a Spherical Turkey
6.8: Schrödinger Equation in Spherical Coordinates
6.9: Curvilinear Coordinates
6.10: Problems

Thumbnail: A three dimensional view of the vibrating annular membrane. (CC BY-NC-SA 3.0 Unported; Russell Herman)
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T
′

+ λTT
′′

c
2

= −λkT ,

= 0.

(6.7)

(6.8)

T (t) = T (0) ,e−λkt

T (t) = a cos ωt +b sinωt, ω = c ,λ
−−

√

(6.9)

(6.10)

T (0), a b ω

ϕ +λϕ = 0. ∇2 (6.11)

+λϕ = 0ϕ′′

λn ϕn
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6.1: Vibrations of Rectangular Membranes
Our first example will be the study of the vibrations of a rectangular membrane. You can think of this as a drumhead with a
rectangular cross section as shown in Figure . We stretch the membrane over the drumhead and fasten the material to the
boundary of the rectangle. The height of the vibrating membrane is described by its height from equilibrium, . This
problem is a much simpler example of higher dimensional vibrations than that possessed by the oscillating electric and magnetic
fields in the last chapter.

Figure : The rectangular membrane of length  and width . There are fixed boundary conditions along the edges.

The problem is given by the two dimensional wave equation in Cartesian coordinates,

a set of boundary conditions,

and a pair of initial conditions (since the equation is second order in time),

The first step is to separate the variables: . Inserting the guess,  into the wave equation, we
have

Dividing by both  and , we obtain

We see that we have a function of  equals a function of  and . Thus, both expressions are constant. We expect oscillations in
time, so we choose the constant  to be positive, . (Note: As usual, the primes mean differentiation with respect to the
specific dependent variable. So, there should be no ambiguity.)

These lead to two equations:

6.1.1
u(x, y, t)

6.1.1 L H

 Example : The Vibrating Rectangular Membrane6.1.1

= ( + ) , t > 0, 0 < x < L, 0 < y < H,utt c2 uxx uyy (6.1.1)

u(0, y, t) = 0,

u(x, 0, t) = 0,

u(L, y, t) = 0, t > 0, 0 < y < H,

u(x,H, t) = 0, t > 0, 0 < x < L,
(6.1.2)

u(x, y, 0) = f(x, y), (x, y, 0) = g(x, y).ut (6.1.3)

u(x, y, t) = X(x)Y (y)T (t) u(x, y, t)

X(x)Y (y) (t) = ( (x)Y (y)T (t) +X(x) (y)T (t)) .T ′′ c2 X ′′ Y ′′

u(x, y, t) c2

= = −λ.
1

c2

T ′′

T
  

unction of t

+
X ′′

X

Y ′′

Y
  

Function of x and y

(6.1.4)

t x y

λ λ > 0
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and

We note that the spatial equation is just the separated form of Helmholtz’s equation with .

The first equation is easily solved. We have

where

This is the angular frequency in terms of the separation constant, or eigenvalue. It leads to the frequency of oscillations for the
various harmonics of the vibrating membrane as

Once we know , we can compute these frequencies.

Next we solve the spatial equation. We need carry out another separation of variables. Rearranging the spatial equation, we have

Here we have a function of  equal to a function of . So, the two expressions are constant, which we indicate with a second
separation constant, . We pick the sign in this way because we expect oscillatory solutions for . This leads to two
equations:

We now impose the boundary conditions. We have  for all  and . This implies that 
 for all  and  in the domain. This is only true if . Similarly, from the other boundary conditions we

find that , and . We note that homogeneous boundary conditions are important in carrying out this
process. Nonhomogeneous boundary conditions could be imposed just like we had in Section 7.3, but we still need the solutions for
homogeneous boundary conditions before tackling the more general problems.

In summary, the boundary value problems we need to solve are:

We have seen boundary value problems of these forms in Chapter ??. The solutions of the first eigenvalue problem are

The second eigenvalue problem is solved in the same manner. The differences from the first problem are that the "eigenvalue" is 
, the independent variable is , and the interval is . Thus, we can quickly write down the solutions as

At this point we need to be careful about the indexing of the separation constants. So far, we have seen that  depends on  and
that the quantity  depends on . Solving for , we should write , or

+ λT = 0,T ′′ c2 (6.1.5)

+ = −λ. 
X ′′

X

Y ′′

Y
(6.1.6)

ϕ(x, y) = X(x)Y (y)

T (t) = a cosωt+b sinωt, (6.1.7)

ω = c . λ
−−

√ (6.1.8)

v= = . 
ω

2π

c

2π
λ
−−

√ (6.1.9)

λ

= = −μ.
X ′′

X
 

Function of x

− −λ
Y ′′

Y
  
Function of y

(6.1.10)

x y

−μ < 0 X(x)

+μX = 0,X ′′

+(λ−μ)Y = 0.Y ′′
(6.1.11)

u(0, y, t) = 0 t > 0 0 < y < H

X(0)Y (y)T (t) = 0 t y X(0) = 0
X(L) = 0,Y (0) = 0 Y (H) = 0

+μXX ′′

+(λ−μ)YY ′′
= 0, X(0) = 0,X(L) = 0.

= 0, Y (0) = 0,Y (H) = 0. (6.1.12)

(x) = sin , = , n = 1, 2, 3, …Xn

nπx

L
μn ( )

nπ

L

2

λ−μ y [0,H]

(y) = sin , λ− = , m = 1, 2, 3, …Ym
mπx

H
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mπ

H

2

μ n

κ = λ−μ m λ = +λnm μn κm
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https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90264?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/07%3A_Green's_Functions/7.03%3A_The_Nonhomogeneous_Heat_Equation


6.1.3 https://math.libretexts.org/@go/page/90264

Since , we have that the discrete frequencies of the harmonics are given by

The harmonics for the vibrating rectangular membrane are given by

for 

We have successfully carried out the separation of variables for the wave equation for the vibrating rectangular membrane. The
product solutions can be written as

and the most general solution is written as a linear combination of the product solutions,

However, before we carry the general solution any further, we will first concentrate on the two dimensional harmonics of this
membrane.

For the vibrating string the th harmonic corresponds to the function  and several are shown in Figure . The various
harmonics correspond to the pure tones supported by the string. These then lead to the corresponding frequencies that one would
hear. The actual shapes of the harmonics are sketched by locating the nodes, or places on the string that do not move.

Figure : The first harmonics of the vibrating string

ω = c λ
−−

√

= c , n,m = 1, 2, …ωnm +( )
nπ

L

2
( )
mπ

H

2
− −−−−−−−−−−−−−

√ (6.1.14)

 Note

=vnm
c

2
+( )

n

L

2
( )
m

H

2
− −−−−−−−−−−−

√

n,m = 1, 2, …

= (a cos t+b sin t) sin sinunm ωnm ωnm

nπx

L

mπy

H
(6.1.15)

u(x, y, t) = ( cos t+ sin t) sin sin .∑
n,m

anm ωnm bnm ωnm

nπx

L
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In the same way, we can explore the shapes of the harmonics of the vibrating membrane. These are given by the spacial functions

Instead of nodes, we will look for the nodal curves, or nodal lines. These are the points  at which . Of course,
these depend on the indices,  and .

For example, when  and , we have

Figure : The first few modes of the vibrating rectangular membrane. The dashed lines show the nodal lines indicating the
points that do not move for the particular mode. Compare these the nodal lines to the  view in Figure .

These are zero when either

Of course, this can only happen for  and . Thus, there are no interior nodal lines.

When  and , we have  and

or, . Thus, there is one interior nodal line at . These points stay fixed during the oscillation and all other points
oscillate on either side of this line. A similar solution shape results for the -mode; i.e.,  and .

In Figure  we show the nodal lines for several modes for  with different columns corresponding to different -
values while the rows are labeled with different -values. The blocked regions appear to vibrate independently. A better view is
the three dimensional view depicted in Figure . The frequencies of vibration are easily computed using the formula for .

For completeness, we now return to the general solution and apply the initial conditions. The general solution is given by a linear
superposition of the product solutions. There are two indices to sum over. Thus, the general solution is

Table : A three dimensional view of the vibrating rectangular membrane for the lowest modes. Compare these images with the
nodal lines in Figure .
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where

The first initial condition is . Setting  in the general solution, we obtain

This is a double Fourier sine series. The goal is to find the unknown coefficients .

The coefficients  can be found knowing what we already know about Fourier sine series. We can write the initial condition as
the single sum

where

These are two Fourier sine series. Recalling from Chapter ?? that the coefficients of Fourier sine series can be computed as
integrals, we have

Inserting the integral for  into that for , we have an integral representation for the Fourier coefficients in the double
Fourier sine series,

= c .ωnm +( )
nπ

L

2
( )
mπ

H

2
− −−−−−−−−−−−−−

√ (6.1.18)

u(x, y, 0) = f(x, y) t = 0

f(x, y) = sin sin .∑
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∞

∑
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∞

anm
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mπy

H
(6.1.19)
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We can carry out the same process for satisfying the second initial condition,  for the initial velocity of each
point. Inserting the general solution into this initial condition, we obtain

Again, we have a double Fourier sine series. But, now we can quickly determine the Fourier coefficients using the above
expression for  to find that

This completes the full solution of the vibrating rectangular membrane problem. Namely, we have obtained the solution

where

and the angular frequencies are given by

This page titled 6.1: Vibrations of Rectangular Membranes is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.
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6.2: Vibrations of a Kettle Drum
In this section we consider the vibrations of a circular membrane of radius  as shown in Figure . Again we are looking for
the harmonics of the vibrating membrane, but with the membrane fixed around the circular boundary given by .
However, expressing the boundary condition in Cartesian coordinates is awkward. Namely, we can only write  for 

. It is more natural to use polar coordinates as indicated in Figure . Let the height of the membrane be given by 
 at time  and position . Now the boundary condition is given as  for all  and .

Figure : The circular membrane of radius . A general point on the membrane is given by the distance from the center, , and
the angle, . There are fixed boundary conditions along the edge at .

Before solving the initial-boundary value problem, we have to cast the full problem in polar coordinates. This means that we need
to rewrite the Laplacian in  and . To do so would require that we know how to transform derivatives in  and  into derivatives
with respect to  and . Using the results from Section ?? on curvilinear coordinates, we know that the Laplacian can be written in
polar coordinates. In fact, we could use the results from Problem ?? in Chapter ?? for cylindrical coordinates for functions which
are -independent, . Then, we would have

We can obtain this result using a more direct approach, namely applying the Chain Rule in higher dimensions. First recall the
transformations between polar and Cartesian coordinates:

and

Now, consider a function . (Technically, once we transform a given function of Cartesian
coordinates we obtain a new function  of the polar coordinates. Many texts do not rigorously distinguish between the two
functions.) Thinking of  and , we have from the chain rule for functions of two variables:

Here we have used

a 6.2.1
+ =x2 y2 a2

u(x, y, t) = 0
+ =x2 y2 a2 6.2.1
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6.2.1 a r
θ r = a

r θ x y

r θ

z f = f(r, θ)

f = (r )+ .∇2 1
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and

Similarly,

The  Laplacian can now be computed as

The last form often occurs in texts because it is in the form of a SturmLiouville operator. Also, it agrees with the result from using
the Laplacian written in cylindrical coordinates as given in Problem ?? of Chapter ??.

Now that we have written the Laplacian in polar coordinates we can pose the problem of a vibrating circular membrane.

This problem is given by a partial differential equation,

= =
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x
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 Example : The Vibrating Circular Membrane6.2.1
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the boundary condition,

and the initial conditions,

Here we state the problem of a vibrating circular membrane. We have chosen , but could have just as easily used 
. The symmetric interval about  will make the use of boundary conditions simpler.

Now we are ready to solve this problem using separation of variables. As before, we can separate out the time dependence. Let 
. As usual,  can be written in terms of sines and cosines. This leads to the Helmholtz equation,

We now separate the Helmholtz equation by letting . This gives

Dividing by , as usual, leads to

The last term is a constant. The first term is a function of . However, the middle term involves both  and . This can be remedied
by multiplying the equation by . Rearranging the resulting equation, we can separate out the -dependence from the radial
dependence. Letting  be another separation constant, we have

This gives us two ordinary differential equations:

Let’s consider the first of these equations. It should look familiar by now. For , the general solution is

The next step typically is to apply the boundary conditions in . However, when we look at the given boundary conditions in the
problem, we do not see anything involving . This is a case for which the boundary conditions that are needed are implied and not
stated outright.

We can determine the hidden boundary conditions by making some observations. Let’s consider the solution corresponding to the
endpoints  . We note that at these -values we are at the same physical point for any . So, we would expect the
solution to have the same value at  as it has at . Namely, the solution is continuous at these physical points. Similarly,
we expect the slope of the solution to be the same at these points. This can be summarized using the boundary conditions

Such boundary conditions are called periodic boundary conditions.

t > 0, 0 < r < a, −π < θ < π, (6.2.4)

u(a, θ, t) = 0, t > 0, −π < θ < π, (6.2.5)

u(r, θ, 0)

(r, θ, 0)ut

= f(r, θ), 0 < r < a, −π < θ < π,

= g(r, θ), , 0 < r < a, −π < θ < π. (6.2.6)

 Note
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μ > 0
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The boundary conditions in  are periodic boundary conditions.

Let’s apply these conditions to the general solution for . First, we set  and use the symmetries of the sine and
cosine functions to obtain

This implies that

This can only be true for , for  Therefore, the eigenfunctions are given by

For the other half of the periodic boundary conditions, , we have that

But, this gives no new information since this equation boils down to  bm.

To summarize what we know at this point, we have found the general solutions to the temporal and angular equations. The product
solutions will have various products of  and . We also know that  and .

We still need to solve the radial equation. Inserting , the radial equation has the form

Expanding the derivative term, we have

The reader should recognize this differential equation from Equation (5.5.11). It is a Bessel equation with bounded solutions 
.

Recall there are two linearly independent solutions of this second order equation: , the Bessel function of the first kind of
order , and , the Bessel function of the second kind of order , or Neumann functions. Plots of these functions are
shown in Figures 5.5.1 and 5.5.2. So, we have the general solution of the radial equation is

Now we are ready to apply the boundary conditions to the radial factor in the product solutions. Looking at the original problem we
find only one condition:  for  and . This implies that . But where is the second condition?

This is another unstated boundary condition. Look again at the plots of the Bessel functions. Notice that the Neumann functions are
not well behaved at the origin. Do you expect that the solution will become infinite at the center of the drum? No, the solutions
should be finite at the center. So, this observation leads to the second boundary condition. Namely,  . This implies that 

.

Table 5.5.1.
Table : The zeros of Bessel Functions, 
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6

7

8

9

Let’s denote the th zero of  by . Then, the boundary condition tells us that

This gives us the eigenvalues as

Thus, the radial function satisfying the boundary conditions is

We are finally ready to write out the product solutions for the vibrating circular membrane. They are given by

Here we have indicated choices with the braces, leading to four different types of product solutions. Also, the angular frequency
depends on the zeros of the Bessel functions,

As with the rectangular membrane, we are interested in the shapes of the harmonics. So, we consider the spatial solution 

Including the solutions involving  will only rotate these modes. The nodal curves are given by . This can be

satisfied if , or . The various nodal curves which result are shown in Figure .

n m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

18.071 19.616 21.117 22.583 24.019 25.430

21.212 22.760 24.270 25.748 27.199 28.627

24.352 25.904 27.421 28.908 30.371 31.812

27.493 29.047 30.569 32.065 33.537 34.989
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Figure : The first few modes of the vibrating circular membrane. The dashed lines show the nodal lines indicating the points
that do not move for the particular mode. Compare these nodal lines with the three dimensional images in Figure 6.1.3.

For the angular part, we easily see that the nodal curves are radial lines, . For , there are no solutions, since 
 for . in Figure  this is seen by the absence of radial lines in the first column.

For , we have . This implies that . These values give the vertical line as shown in the second column in
Figure . For  implies that . This results in the two lines shown in the last column of Figure .

We can also consider the nodal curves defined by the Bessel functions. We seek values of  for which  is a zero of the Bessel
function and lies in the interval . Thus, we have

or

These will give circles of these radii with , or . For  and , there is only one zero and . In fact,
for all  modes, there is only one zero giving . Thus, the first row in Figure  shows no interior nodal circles.

For a three dimensional view, one can look at Figure 6.1.3. Imagine that the various regions are oscillating independently and that
the points on the nodal curves are not moving.

We should note that the nodal circles are not evenly spaced and that the radii can be computed relatively easily. For the 
modes, we have two circles,  and  as shown in the second row of Figure . For

Table : A three dimensional view of the vibrating circular membrane for the lowest modes. Compare these images with the
nodal line plots in Figure .
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,

for the inner circle. For ,

and for ,

For  we obtain circles of radii

For ,

Similarly, for ,

and for ,

More complicated vibrations can be dreamt up for this geometry. Consider an annulus in which the drum is formed from two
concentric circular cylinders and the membrane is stretch between the two with an annular cross section as shown in Figure 
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. The separation would follow as before except now the boundary conditions are that the membrane is fixed around the
two circular boundaries. In this case we cannot toss out the Neumann functions because the origin is not part of the drum head.

Figure : An annular membrane with radii  and . There are fixed boundary conditions along the edges at  and 
.

Solution
The domain for this problem is shown in Figure  and the problem is given by the partial differential equation

the boundary conditions,

and the initial conditions,

Since we cannot dispose of the Neumann functions, the product solutions take the form

where

and 

For this problem the radial boundary conditions are that the membrane is fixed at  and . Taking , we then
have to satisfy the conditions

6.2.3

6.2.3 a b > a r = a
r = b

6.2.3

= [ (r )+ ] ,utt c2 1

r

∂

∂r

∂u

∂r

1

r2

u∂2

∂θ2

t > 0, b < r < a, −π < θ < π,

(6.2.14)

u(b, θ, t) = 0, u(a, θ, t) = 0, t > 0, −π < θ < π, (6.2.15)

u(r, θ, 0)

(r, θ, 0)ut

= f(r, θ), b < r < a, −π < θ < π,

= g(r, θ), b < r < a, −π < θ < π. (6.2.16)

u(r, θ, t) ={ }{ } (r),
cosωt

sinωt

cosmθ

sinmθ
Rm (6.2.17)

(r) = ( r) + ( r)Rm c1Jm λ
−−

√ c2Nm λ
−−

√

ω = c , m = 0, 1, …λ
−−

√

r = a r = b b < a
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This leads to two homogeneous equations for  and . The coefficient determinant of this system has to vanish if there are to
be nontrivial solutions. This gives the eigenvalue equation for  :

There are an infinite number of zeros of the function

In Figure  we show a plot of  for  and .

Figure : Plot of the function  for  and  and 
.

This eigenvalue equation needs to be solved numerically. Choosing  and , we have for the first few modes

Note, since , these numbers essentially give us the frequencies of oscillation.

For these particular roots, we can solve for  and  up to a multiplicative constant. A simple solution is to set

This leads to the basic modes of vibration,

for , and . In Figure  we show various modes for the particular choice of annular membrane
dimensions,  and .

This page titled 6.2: Vibrations of a Kettle Drum is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

R(a) = ( a) + ( a) = 0,c1Jm λ
−−

√ c2Nm λ
−−

√

R(b) = ( b) + ( b) = 0.c1Jm λ
−−

√ c2Nm λ
−−

√ (6.2.18)

c1 c2

λ

( a) ( b) − ( b) ( a) = 0.Jm λ
−−

√ Nm λ
−−

√ Jm λ
−−

√ Nm λ
−−

√

F (λ) = λ : ( a) ( b) − ( b) ( a)Jm λ
−−

√ Nm λ
−−

√ Jm λ
−−

√ Nm λ
−−

√

6.2.4 F (λ) a = 4, b = 2 m = 0, 1, 2, 3

6.2.4 F (λ) = ( a) ( b) − ( b) ( a)Jm λ
−−√ Nm λ

−−√ Jm λ
−−√ Nm λ

−−√ a = 4 b = 2
m = 0, 1, 2, 3

a = 2 b = 4

λmn

− −−
√ ≈ 1.562, 3.137, 4.709,

≈ 1.598, 3.156, 4.722,

≈ 1.703, 3.214, 4.761,

m = 0

m = 1

m = 2.

(6.2.19)

= cωmn λmn

− −−
√
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√ c2 Jm λmn
− −−

√
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√ Jm λmn
− −−
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6.3: Laplace’s Equation in 2D
Another of the generic partial differential equations is Laplace’s equation, . This equation first appeared in the chapter on
complex variables when we discussed harmonic functions. Another example is the electric potential for electrostatics. As we
described Chapter ??, for static electromagnetic fields,

In regions devoid of charge, these equations yield the Laplace equation .

Another example comes from studying temperature distributions. Consider a thin rectangular plate with the boundaries set at fixed
temperatures. Temperature changes of the plate are governed by the heat equation. The solution of the heat equation subject to
these boundary conditions is time dependent. In fact, after a long period of time the plate will reach thermal equilibrium. If the
boundary temperature is zero, then the plate temperature decays to zero across the plate. However, if the boundaries are maintained
at a fixed nonzero temperature, which means energy is being put into the system to maintain the boundary conditions, the internal
temperature may reach a nonzero equilibrium temperature. Reaching thermal equilibrium means that asymptotically in time the
solution becomes time independent. Thus, the equilibrium state is a solution of the time independent heat equation, which is
another Laplace equation, .

Table : A three dimensional view of the vibrating annular membrane for the lowest modes.

Thermodynamic equilibrium, .

Incompressible, irrotational fluid flow, , for velocity 

As another example we could look at fluid flow. For an incompressible flow, . If the flow is irrotational, then .
We can introduce a velocity potential, . Thus,  vanishes by a vector identity and  implies . So,
once again we obtain Laplace’s equation.

u = 0∇2

∇ ⋅ E = ρ/ , E = ∇ϕ.ϵ0

ϕ = 0∇2

u = 0∇2

6.3.1

 Note

u = 0∇2

 Note

ϕ = 0∇2
v = ∇ϕ.

∇ ⋅ v = 0 ∇ ×v = 0
v = ∇ϕ ∇ ×v ∇ ⋅ v = 0 ϕ = 0∇2
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In this section we will look at examples of Laplace’s equation in two dimensions. The solutions in these examples could be
examples from any of the application in the above physical situations and the solutions can be applied appropriately.

Let’s consider Laplace’s equation in Cartesian coordinates,

with the boundary conditions

The boundary conditions are shown in Figure .

Figure : In this figure we show the domain and boundary conditions for the example of determining the equilibrium
temperature for a rectangular plate.

Solution
As with the heat and wave equations, we can solve this problem using the method of separation of variables. Let 

. Then, Laplace’s equation becomes

and we can separate the  and  dependent functions and introduce a separation constant, ,

Thus, we are led to two differential equations,

From the boundary condition , we have   So, we have the usual eigenvalue
problem for ,

The solutions to this problem are given by

 Example : Equilibruim Temperature Distribution for a Rectangular Plate6.3.1

+ = 0, 0 < x < L, 0 < y < Huxx uyy

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f(x), u(x,H) = 0.

6.3.1

6.3.1

u(x, y) = X(x)Y (y)

Y +X = 0X ′′ Y ′′

x y λ

= − = −λ. 
X ′′

X

Y ′′

Y

+λX = 0X ′′

−λY = 0Y ′′ (6.3.1)

u(0, y) = 0, u(L, y) = 0 X(0) = 0,X(L) = 0.
X(x)

+λX = 0, X(0) = 0,X(L) = 0.X ′′

(x) = sin , = , n = 1, 2, …Xn

nπx

L
λn ( )

nπ

L

2
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The general solution of the equation for  is given by

The boundary condition  implies  So, we have

Thus,

Inserting this result into the expression for , we have

Having carried out this computation, we can now see that it would be better to guess this form in the future. So, for 
, one would guess a solution  For , one would guess a solution 

. Similarly, if , one would guess a solution 

Since we already know the values of the eigenvalues  from the eigenvalue problem for , we have that the -
dependence is given by

So, the product solutions are given by

These solutions satisfy Laplace’s equation and the three homogeneous boundary conditions and in the problem.

The remaining boundary condition, , still needs to be satisfied. Inserting  in the product solutions does not
satisfy the boundary condition unless  is proportional to one of the eigenfunctions . So, we first write down the
general solution as a linear combination of the product solutions,

Now we apply the boundary condition, , to find that

Defining , this becomes

We see that the determination of the unknown coefficients, , is simply done by recognizing that this is a Fourier sine series.
The Fourier coefficients are easily found as

Y (y)

Y (y) = +c1e
yλ√ c2e

− yλ√

u(x,H) = 0 Y (H) = 0.

+ = 0.c1e
λH√ c2e

− λH√

= − .c2 c1e
2 Hλ√

Y (y)

Y (y) = −c1e
yλ√ c1e

2 Hλ√ e− yλ√

= ( − )c1e
Hλ√ e− Hλ√ e yλ√ e Hλ√ e− yλ√

= ( − )c1e
Hλ√ e− (H−y)λ√ e (H−y)λ√

= −2 sinh (H −y)c1e
Hλ√ λ

−−
√ (6.3.2)

 Note

Y (H) = 0 Y (y) = sinh (H −y)λ
−−

√ Y (0) = 0
Y (y) = sinh yλ

−−
√ (H) = 0Y ′ Y (y) = cosh (H −y)λ

−−
√

λn X(x) y

(y) = sinh .Yn
nπ(H −y)

L

(x, y) = sin sinh , n = 1, 2, …un
nπx

L

nπ(H −y)

L

u(x, 0) = f(x) y = 0
f(x) (x)Xn

u(x, y) = sin sinh .∑
n=1

∞

an
nπx

L

nπ(H −y)

L
(6.3.3)

u(x, 0) = f(x)

f(x) = sinh sin .∑
n=1

∞

an
nπH

L

nπx

L
(6.3.4)

= sinhbn an
nπH

L

f(x) = sin .∑
n=1

∞

bn
nπx

L
(6.3.5)

bn

= f(x) sin dx.bn
2

L
∫

L

0

nπx

L
(6.3.6)
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Since , we can finish solving the problem. The solution is

where

A more general problem is to seek solutions to Laplace’s equation in Cartesian coordinates,

with non-zero boundary conditions on more than one side of the domain,

These boundary conditions are shown in Figure .

Figure : In this figure we show the domain and general boundary conditions for the example of determining the
equilibrium temperature distribution for a rectangular plate.

Solution
The problem with this example is that none of the boundary conditions are homogeneous. This means that the corresponding
eigenvalue problems will not have the homogeneous boundary conditions which Sturm-Liouville theory in Section 4 needs.
However, we can express this problem in terms of four different problems with nonhomogeneous boundary conditions on only
one side of the rectangle.

= / sinhan bn
nπH

L

u(x, y) = sin sinh ,∑
n=1

∞

an
nπx

L

nπ(H −y)

L
(6.3.7)

= f(x) sin dxan
2

L sinh nπH

L

∫
L

0

nπx

L
(6.3.8)

 Example : Equilibrium Temperature Distribution for a Rectangular Plate for General Boundary
Conditions

6.3.2

+ = 0, 0 < x < L, 0 < y < Huxx uyy

u(0, y) = (y), u(L, y) = (y), 0 < y < H,g1 g2

u(x, 0) = (x), u(x,H) = (x), 0 < x < L.f1 f2

6.3.2

6.3.2
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Figure : The general boundary value problem for a rectangular plate can be written as the sum of these four separate
problems.

In Figure  we show how the problem can be broken up into four separate problems for functions .
Since the boundary conditions and Laplace’s equation are linear, the solution to the general problem is simply the sum of the
solutions to these four problems,

Then, this solution satisfies Laplace’s equation,

and the boundary conditions. For example, using the boundary conditions defined in Figure , we have for ,

The other boundary conditions can also be shown to hold.

We can solve each of the problems in Figure  quickly based on the solution we obtained in the last example. The solution
for , which satisfies the boundary conditions

is the easiest to write down. It is given by

where

For the boundary conditions

6.3.3

6.3.3 (x, y), i = 1, … , 4ui

u(x, y) = (x, y) + (x, y) + (x, y) + (x, y).u1 u2 u3 u4

u(x, y) = (x, y) + (x, y) + (x, y) + (x, y) = 0,∇2 ∇2u1 ∇2u2 ∇2u3 ∇2u4

6.3.3 y = 0

u(x, 0) = (x, 0) + (x, 0) + (x, 0) + (x, 0) = (x).u1 u2 u3 u4 f1

6.3.3
(x, y)u1

(0, y) = 0, (L, y) = 0, 0 < y < H,u1 u1

(x, 0) = (x), (x,H) = 0, 0 < x < L,u1 f1 u1

(x, y) = sin sinh .u1 ∑
n=1

∞

an
nπx

L

nπ(H −y)

L
(6.3.9)

= (x) sin dxan
2

L sinh nπH

L

∫
L

0
f1

nπx

L
(6.3.10)

(0, y) = 0, (L, y) = 0, 0 < y < H,u2 u2

(x, 0) = 0, (x,H) = (x), 0 < x < L.u2 u2 f2
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the boundary conditions for  are  and . So, we get the same form for the eigenvalues and
eigenfunctions as before:

The remaining homogeneous boundary condition is now . Recalling that the equation satisfied by  is

we can write the general solution as

Requiring , we have , or

Then, the general solution is

We now force the nonhomogeneous boundary condition, ,

Once again we have a Fourier sine series. The Fourier coefficients are given by

Next we turn to the problem with the boundary conditions

In this case the pair of homogeneous boundary conditions  0 lead to solutions

The condition  gives .

The general solution satisfying the homogeneous conditions is

Applying the nonhomogeneous boundary condition, , we obtain the Fourier sine series

The Fourier coefficients are found as

Finally, we can find the solution

X(x) X(0) = 0 X(L) = 0

(x) = sin , = ,n = 1, 2, … .Xn

nπx

L
λn ( )

nπ

L

2

Y (0) = 0 Y (y)

−λY = 0,Y ′′

Y (y) = cosh y+ sinh y.c1 λ
−−

√ c2 λ
−−

√

Y (0) = 0 = 0c1

Y (y) = sinh y.c2 λ
−−

√

(x, y) = sin sinh .u2 ∑
n=1

∞

bn
nπx

L

nπy

L
(6.3.11)

(x,H) = (x)u2 f2

(x) = sin sinh .f2 ∑
n=1

∞

bn
nπx

L

nπH

L
(6.3.12)

= (x) sin dx.bn
2

L sinh nπH

L

∫
L

0
f2

nπx

L
(6.3.13)

(0, y) = (y), (L, y) = 0, 0 < y < H,u3 g1 u3

(x, 0) = 0, (x,H) = 0, 0 < x < L.u3 u3

(x, 0) = 0, (x,H) =u3 u3

(y) = sin , = − , n = 1, 2 … .Yn
nπy

H
λn ( )

nπ

H

2

(L, 0) = 0u3 X(x) = sinh
nπ(L−x)

H

(x, y) = sin sinh .u3 ∑
n=1

∞

cn
nπy

H

nπ(L−x)

H
(6.3.14)

(0, y) = (y)u3 g1

(y) = sin sinh .g1 ∑
n=1

∞

cn
nπy

H

nπL

H
(6.3.15)

= (y) sin dy.cn
2

H sinh nπL

H

∫
H

0
g1

nπy

H
(6.3.16)

(0, y) = 0, (L, y) = (y), 0 < y < H,u4 u4 g2

(x, 0) = 0, (x,H) = 0, 0 < x < L.u4 u4
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Following the above analysis, we find the general solution

The nonhomogeneous boundary condition, , is satisfied if

The Fourier coefficients, , are given by

The solution to the general problem is given by the sum of these four solutions.

where the coefficients are given by the above Fourier integrals.

We now turn to solving Laplace’s equation on a disk of radius a as shown in Figure . Laplace’s equation in polar
coordinates is given by

The boundary conditions are given as

plus periodic boundary conditions in .

Figure : The disk of radius  with or boundary condition along the edge at .

(x, y) = sin sinh .u4 ∑
n=1

∞

dn
nπy

H

nπx

H
(6.3.17)

u(L, y) = (y)g2

(y) = sin sinh .g2 ∑
n=1

∞

dn
nπy

H

nπL

H
(6.3.18)

dn

= (y) sin dy.dn
2

H sinh nπL
H

∫
H

0
g1

nπy

H
(6.3.19)

u(x, y) = [( sinh + sinh ) sin∑
n=1

∞

an
nπ(H −y)

L
bn

nπy

L

nπx

L

+( sinh + sinh ) sin ] ,cn
nπ(L−x)

H
dn

nπx

H

nπy

H
(6.3.20)

 Example : Laplace's Equation on a Disk6.3.3

6.3.4

(r )+ = 0, 0 < r < a, −π < θ < π.
1

r

∂

∂r

∂u

∂r

1

r2

u∂2

∂θ2
(6.3.21)

u(a, θ) = f(θ), −π < θ < π, (6.3.22)

θ

6.3.4 a r = a
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Solution
Separation of variable proceeds as usual. Let . Then

or

Diving by , multiplying by , and rearranging, we have

Since this equation gives a function of  equal to a function of , we set the equation equal to a constant. Thus, we have
obtained two differential equations, which can be written as

We can solve the second equation subject to the periodic boundary conditions in the  variable. The reader should be able to
confirm that

is the solution. Note that the  case just leads to a constant solution.

Inserting  into the radial equation, we find

This is a Cauchy-Euler type of ordinary differential equation. Recall that we solve such equations by guessing a solution of the
form . This leads to the characteristic equation . Therefore, . So,

Since we expect finite solutions at the origin, , we can set (. Thus, the general solution is

Note that we have taken the constant term out of the sum and put it into a familiar form.

Now we can impose the remaining boundary condition, , or

This is a Fourier trigonometric series. The Fourier coefficients can be determined using the results from Chapter 4 :

Poisson Integral Formula
We can put the solution from the last example in a more compact form by inserting the Fourier coefficients into the general
solution. Doing this, we have

u(r, θ) = R(r)Θ(θ)

(r )+ = 0,
1

r

∂

∂r

∂(RΘ)

∂r

1

r2

(RΘ)∂2

∂θ2
(6.3.23)

Θ + R = 0.
1

r
(r )R′ ′ 1

r2
Θ′′ (6.3.24)

u(r, θ) = R(r)Θ(θ) r2

= − = λ.
r

R
(r )R′ ′ Θ′′

Θ
(6.3.25)

r θ

r −λR(r )R′ ′

+λΘΘ′′
= 0

= 0

(6.3.26)

(6.3.27)

θ

Θ(θ) = cosnθ+ sinnθ, λ = ,n = 0, 1, 2, …an bn n2

n = 0

λ = n2

+r − R = 0.r2R′′ R′ n2

R(r) = rm − = 0m2 n2 m = ±n

R(r) = + .c1r
n c2r

−n

r = 0

u(r, θ) = + ( cosnθ+ sinnθ) .
a0

2
∑
n=1

∞

an bn rn (6.3.28)

u(a, θ) = f(θ)

f(θ) = + ( cosnθ+ sinnθ) .
a0

2
∑
n=1

∞

an bn an (6.3.29)

= f(θ) cosnθdθ, n = 0, 1, … ,an
1

πan
∫

π

−π

= f(θ) sinnθdθ n = 1, 2 … .bn
1

πan
∫

π

−π

(6.3.30)

(6.3.31)
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The term in the brackets can be summed. We note that

Therefore,

The right hand side of this equation is a geometric series with common ratio of , which is also the first term of the series.
Since , the series converges. Summing the series, we obtain

We need to rewrite this result so that we can easily take the real part. Thus, we multiply and divide by the complex conjugate of the
denominator to obtain

The real part of the sum is given as

Therefore, the factor in the brackets under the integral in Equation  is

Thus, we have shown that the solution of Laplace’s equation on a disk of radius  with boundary condition  can be
written in the closed form

This result is called the Poisson Integral Formula and

u(r, θ) =

=

=

+ ( cosnθ+ sinnθ)
a0

2
∑
n=1

∞

an bn rn

f(ϕ)dϕ
1

2π
∫

π

−π

+ [cosnϕ cosnθ+sinnϕ sinnθ] f(ϕ)dϕ
1

π
∫

π

−π

∑
n=1

∞

( )
r

a

n

[ + cosn(θ−ϕ) ] f(ϕ)dϕ.
1

π
∫

π

−π

1

2
∑
n=1

∞

( )
r

a

n

(6.3.32)

cosn(θ−ϕ)( )
r

a

n

= Re( )ein(θ−ϕ)( )
r

a

n

= Re .( )
r

a
ei(θ−ϕ)

n

(6.3.33)

cosn(θ−ϕ) = Re( ).∑
n=1

∞

( )
r

a

n

∑
n=1

∞

( )
r

a
ei(θ−ϕ)

n

r

a
ei(θ−ϕ)

= < 1∣∣
r

a
ei(θ−ϕ) ∣∣

r

a

∑
n=1

∞

( )
r

a
ei(θ−ϕ)

n

=
r
a
ei(θ−ϕ)

1 − r
a
ei(θ−ϕ)

=
rei(θ−ϕ)

a−rei(θ−ϕ)
(6.3.34)

∑
n=1

∞

( )
r

a
ei(θ−ϕ)

n

=
rei(θ−ϕ)

a−rei(θ−ϕ)

a−re−i(θ−ϕ)

a−re−i(θ−ϕ)

= .
ar −e−i(θ−ϕ) r2

+ −2ar cos(θ−ϕ)a2 r2
(6.3.35)

Re( ) = .∑
n=1

∞

( )
r

a
ei(θ−ϕ)

n ar cos(θ−ϕ) −r2

+ −2ar cos(θ−ϕ)a2 r2

(6.3.32)

+ cosn(θ−ϕ)
1

2
∑
n=1

∞

( )
r

a

n

= +
1

2

arcos(θ−ϕ) −r2

+ −2 arcos(θ−ϕ)a2 r2

=
−a2 r2

2 ( + −2 arcos(θ−ϕ))a2 r2
(6.3.36)

a u(a, θ) = f(θ)

u(r, θ) = f(ϕ)dϕ.
1

2π
∫

π

−π

−a2 r2

+ −2ar cos(θ−ϕ)a2 r2
(6.3.37)
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is called the Poisson kernel.

Evaluate the solution  at the center of the disk.

Solution
We insert  into the solution  to obtain

Recalling that the average of a function  on  is given by

we see that the value of the solution  at the center of the disk is the average of the boundary values. This is sometimes
referred to as the mean value theorem.

This page titled 6.3: Laplace’s Equation in 2D is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

K(θ,ϕ) =
−a2 r2

+ −2ar cos(θ−ϕ)a2 r2

 Example 6.3.4

(6.3.37)

r = 0 (6.3.37)

u(0, θ) = f(ϕ)dϕ.
1

2π
∫

π

−π

g(x) [a, b]

= g(x)dx,gave 
1

b−a
∫

b

a

u
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6.4: Three Dimensional Cake Baking
In the rest of the chapter we will extend our studies to three dimensional problems. In this section we will solve the heat equation as
we look at examples of baking cakes.

We consider cake batter, which is at room temperature of . It is placed into an oven, also at a fixed temperature, 
. For simplicity, we will assume that the thermal conductivity and cake density are constant. Of course, this is not quite

true. However, it is an approximation which simplifies the model. We will consider two cases, one in which the cake is a
rectangular solid, such as baking it in a  baking pan. The other case will lead to a cylindrical cake, such as you
would obtain from a round cake pan.

This discussion of cake baking is adapted from R. Wilkinson’s thesis work. That in turn was inspired by work done by Dr.
Olszewski,(2006) From baking a cake to solving the diffusion equation. American Journal of Physics .

Assuming that the heat constant  is indeed constant and the temperature is given by , we begin with the heat equation in
three dimensions,

We will need to specify initial and boundary conditions. Let  be the initial batter temperature, .

We choose the boundary conditions to be fixed at the oven temperature . However, these boundary conditions are not
homogeneous and would lead to problems when carrying out separation of variables. This is easily remedied by subtracting the
oven temperature from all temperatures involved and defining . The heat equation then becomes

with initial condition

The boundary conditions are now homogeneous. We cannot be any more specific than this until we specify the geometry.

We will consider a rectangular cake with dimensions , and  as show in Figure . For

this problem, we seek solutions of the heat equation plus the conditions

= FTi 80∘

= FTb 350∘

× ×13′′ 9′′ 2′′

 Note

74(6)

k T (r, t)

= k T . 
∂T

∂t
∇2 (6.4.1)

Ti T (x, y, z, 0) = Ti

Tb

u(r, t) = T (r, t) −Tb

= k u
∂u

∂t
∇2 (6.4.2)

u(r, 0) = − .Ti Tb

 Example : Temperature of a Rectangular Cake6.4.1

0 ≤ x ≤ W , 0 ≤ y ≤ L 0 ≤ z ≤ H 6.4.1

u(x, y, z, 0)

u(0, y, z, t) = u(W , y, z, t)

u(x, 0, z, t) = u(x,L, z, t)

u(x, y, 0, t) = u(x, y,H, t)

= − ,Ti Tb

= 0,

= 0,

= 0.
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Figure : The dimensions of a rectangular cake.

Solution
Using the method of separation of variables, we seek solutions of the form

Substituting this form into the heat equation, we get

Setting these expressions equal to , we get

Therefore, the equation for  is given by

We further have to separate out the functions of , and . We anticipate that the homogeneous boundary conditions will lead
to oscillatory solutions in these variables. Therefore, we expect separation of variables will lead to the eigenvalue problems

Noting that

we find from the heat equation that the separation constants are related,

We could have gotten to this point quicker by writing the first separated equation labeled with the separation constants as

Then, we can read off the eigenvalues problems and determine that  .

6.4.1

u(x, y, z, t) = X(x)Y (y)Z(z)G(t). (6.4.3)

= + + .
1

k

G′

G

X ′′

X

Y ′′

Y

Z ′′

Z
(6.4.4)

−λ

= −λ  and  + + = −λ
1

k

G′

G

X ′′

X

Y ′′

Y

Z ′′

Z
(6.4.5)

G(t)

+kλG= 0.G′

x, y z

+ XX ′′ μ2

+ YY ′′ v2

+ ZZ ′′ κ2

= 0,

= 0,

= 0,

X(0)

Y (0)

Z(0)

= X(W ) = 0,

= Y (L) = 0,

= Z(H) = 0. (6.4.6)

= − , = − , = − ,
X ′′

X
μ2 Y ′′

Y
v2 Z ′′

Z
κ2

= + + .λ2 μ2 v2 κ2

= + + .
1

k

G′

G
  

−λ

X ′′

X 
−μ

Y ′′

Y 
−v

Z ′′

Z 
−κ

= + +λ2 μ2 v2 κ2
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From the boundary conditions, we get product solutions for  in the form

for

The general solution is a linear combination of all of the product solutions, summed over three different indices,

where the  ’s are arbitrary constants.

Figure : Rectangular cake showing a vertical slice.

We can use the initial condition  to determine the 's. We find

This is a triple Fourier sine series.

We can determine these coefficients in a manner similar to how we handled double Fourier sine series earlier in the chapter.
Defining

we obtain a simple Fourier sine series:

The Fourier coefficients can then be found as

Using the same technique for the remaining sine series and noting that  is constant, we can determine the general
coefficients  by carrying out the needed integrations:

u(x, y, z, t)

(x, y, z, t) = sin x sin y sin z ,umnℓ μm vn κℓ e− ktλmn

= + + = + + , m,n, ℓ = 1, 2, …λmnl μ2
m v2

n κ2
ℓ

( )
mπ

W

2
( )
nπ

L

2
( )

ℓπ

H

2

u(x, y, z, t) = sin x sin y sin z ,∑
m=1

∞

∑
n=1

∞

∑
ℓ=1

∞

Amnl μm vn κℓ e− ktλmn (6.4.7)

Amn 

6.4.2

u(x, y, z, 0) = −Ti Tb Amnℓ

− = sin x sin y sin z.Ti Tb ∑
m=1

∞

∑
n=1

∞

∑
ℓ=1

∞

Amnl μm vn kℓ (6.4.8)

(y, z) = sin y sin z,bm ∑
n=1

∞

∑
ℓ=1

∞

Amnl vn kℓ

− = (y, z) sin x.Ti Tb ∑
m=1

∞

bm μm (6.4.9)

(y, z) = ( − ) sin xdx.bm
2

W
∫

W

0

Ti Tb μm

−Ti Tb
Amnl
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Since only the odd multiples yield non-zero  we let , , and  for 
. The expansion coefficients can now be written in the simpler form

Substituting this result into general solution and dropping the primes, we find

where

for 

Recalling that the solution to the physical problem is

we have the final solution is given by

Amnl = ( − ) sin x sin y sin zdxdydz
8

WLH
∫

H

0

∫
L

0

∫
W

0

Ti Tb μm vn kℓ

= ( − )Ti Tb
8

π3
[ ]

cos( )mπx

W

m

W

0

[ ]
cos( )nπy

L

n

L

0

⎡

⎣
⎢

cos( )ℓπz
H

ℓ

⎤

⎦
⎥

H

0

= ( − ) [ ][ ][ ]Ti Tb
8

π3

cosmπ−1

m

cosnπ−1

n

cos ℓπ−1

ℓ

= ( − ) {Ti Tb
8

π3

0,

[ ][ ][ ] ,−2
m

−2
n

−2
ℓ

for at least one m,n, ℓ even,

for m,n, ℓ all odd.

Amnℓ m = 2 −1m′ n = 2 −1n′ ℓ = 2 −1ℓ′

, , = 1, 2, …m′ n′ ℓ′

= .Amn

64( − )Tb Ti

(2 −1)(2 −1)(2 −1)m′ n′ ℓ′ π3

u(x, y, z, t) = ,
64( − )Tb Ti

π3
∑
m=1

∞

∑
n=1

∞

∑
ℓ=1

∞ sin x sin y sin zμm vn kℓ e− ktλmnt

(2m−1)(2n−1)(2ℓ −1)

= + +λmnℓ ( )
(2m−1)π

W

2

( )
(2n−1)π

L

2

( )
(2ℓ −1)π

H

2

m,n, ℓ = 1, 2, … . .

T (x, y, z, t) = u(x, y, z, t) + ,Tb

T (x, y, z, t) = +Tb
64 ( − )Tb Ti

π3
∑
m=1

∞

∑
n=1

∞

∑
ℓ=1

∞ sin x sin y sin zμ̂m v̂n κ̂ℓ e− ktλ̂mnℓ

(2m−1)(2n−1)(2ℓ −1)
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Figure : Temperature evolution for a  cake shown as vertical slices at the indicated length in feet.

We show some temperature distributions in Figure . Since we cannot capture the entire cake, we show vertical slices such
as depicted in Figure . Vertical slices are taken at the positions and times indicated for a  cake. Obviously,
this is not accurate because the cake consistency is changing and this will affect the parameter . A more realistic model would
be to allow . However, such problems are beyond the simple methods described in this book.

In this case the geometry of the cake is cylindrical as show in Figure . Therefore, we need to express the boundary
conditions and heat equation in cylindrical coordinates. Also, we will assume that the solution, , is
independent of  due to axial symmetry. This gives the heat equation in  independent cylindrical coordinates as

where  and . The initial condition is

and the homogeneous boundary conditions on the side, top, and bottom of the cake are

Figure : Geometry for a cylindrical cake.

6.4.3 × ×13′′ 9′′ 2′′

6.4.3

6.4.2 × ×13′′ 9′′ 2′′

k

k = k(T (x, y, z, t))

 Example : Circular Cakes6.4.2

6.4.4

u(r, z, t) = T (r, z, t) −Tb
θ θ

= k( (r )+ ) ,
∂u

∂t

1

r

∂

∂r

∂u

∂r

u∂2

∂z2
(6.4.10)

0 ≤ r ≤ a 0 ≤ z ≤ Z

u(r, z, 0) = − ,Ti Tb

u(a, z, t) = 0,

u(r, 0, t) = u(r,Z, t) = 0.

6.4.4
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Solution
Again, we seek solutions of the form . Separation of variables leads to

Here we have indicated the separation constants, which lead to three ordinary differential equations. These equations and the
boundary conditions are

We further note that the separation constants are related by .

We can easily write down the solutions for  and ,

and

where . Recalling from the rectangular case that only odd terms arise in the Fourier sine series coefficients for the
constant initial condition, we proceed by rewriting  as

with .

The radial equation can be written in the form

This is a Bessel equation of the first kind of order zero which we had seen in Section 5.5. Therefore, the general solution is a
linear combination of Bessel functions of the first and second kind,

Since  is bounded at  and  is not well behaved at , we set . Up to a constant factor, the solution
becomes

The boundary condition  gives the eigenvalues as

where  is the  roots of the zeroth-order Bessel function, .

Therefore, we have found the product solutions

where . Combining the product solutions, the general solution is found as

u(r, z, t) = R(r)H(z)G(t)

= + .
1

k

G′

G  
−λ

(r )
1

rR

d

dr
R′

  
−μ2

H ′′

H 
−v2

(6.4.11)

+kλGG′

(r ) + rR
d

dr
R′ μ2

+ HH ′′ v2

= 0,

= 0, R(a) = 0, R(0) is finite, 

= 0, H(0) = H(Z) = 0. (6.4.12)

λ = +μ2 v2

G(t) H(z)

G(t) = Ae−λkt

(z) = sin , n = 1, 2, 3, … ,Hn

nπz

Z

v= nπ
Z

H(z)

(z) = sin , n = 1, 2, 3, …Hn

(2n−1)πz

Z
(6.4.13)

v=
(2n−1)π

Z

+r + R = 0.r2R′′ R′ μ2r2

R(r) = (μr) + (μr).c1J0 c2N0 (6.4.14)

R(r) r = 0 (μr)N0 r = 0 = 0c2

R(r) = (μr).J0 (6.4.15)

R(a) = 0

= , m = 1, 2, 3, … ,μm

j0m

a

j0m mth  ( ) = 0J0 j0m

(z) (r)G(t) = sin ( ) ,Hn Rm

(2n−1)πz

Z
J0

r

a
j0m e− ktλnm (6.4.16)

m = 1, 2, 3, … ,n = 1, 2, …

u(r, z, t) = sin ( )∑
n=1

∞

∑
m=1

∞

Anm

(2n−1)πz

Z
J0

r

a
j0m e− ktλnm (6.4.17)
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with

for .

Inserting the solution into the constant initial condition, we have

This is a double Fourier series but it involves a Fourier-Bessel expansion. Writing

the condition becomes

As seen previously, this is a Fourier sine series and the Fourier coefficients are given by

We insert this result into the Fourier-Bessel series,

and recall from Section 5.5 that we can determine the Fourier coefficients  using the Fourier-Bessel series,

where the Fourier-Bessel coefficients are found as

Comparing these series expansions, we have

In order to evaluate , we let  and get

= + ,λnm ( )
(2n−1)π

Z

2

( )
j0m

a

2

n,m = 1, 2, 3, …

− = sin ( ) .Ti Tb ∑
n=1

∞

∑
m=1

∞

Anm

(2n−1)πz

Z
J0

r

a
j0m

(r) = ( ) ,bn ∑
m=1

∞

AnmJ0
r

a
j0m

− = (r) sin .Ti Tb ∑
n=1

∞

bn
(2n−1)πz

Z

(r)bn = ( − ) sin dz
2

Z
∫

Z

0

Ti Tb
(2n−1)πz

Z

=
2 ( − )Ti Tb

Z
[− cos ]

Z

(2n−1)π

(2n−1)πz

Z

Z

0

=
4 ( − )Ti Tb

(2n−1)π

= ( ) ,
4 ( − )Ti Tb

(2n−1)π
∑
m=1

∞

AnmJ0
r

a
j0m

Anm

f(x) = ( ) ,∑
n=1

∞

cnJp jpn
x

a
(6.4.18)

= xf(x) ( )dx.cn
2

a2 [ ( )]Jp+1 jpn
2
∫

a

0

Jp jpn
x

a
(6.4.19)

= ( r) rdr.Anm

2

( )a2J 2
1 j0m

4 ( − )Ti Tb

(2n−1)π
∫

a

0

J0 μm (6.4.20)

( r) rdr∫ a

0 J0 μm y = rμm
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Here we have made use of the identity  from Section 5.5.

Substituting the result of this integral computation into the expression for , we find

Substituting this result into the original expression for , gives

Therefore,  is found as

where

We have therefore found the general solution for the three-dimensional heat equation in cylindrical coordinates with constant
diffusivity. Similar to the solutions shown in Figure  of the previous section, we show in Figure  the temperature
evolution throughout a standard  round cake pan. These are vertical slices similar to what is depicted in Figure .

Figure : Depiction of a sideview of a vertical slice of a circular cake.
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Figure : Temperature evolution for a standard  cake shown as vertical slices through the center.

Again, one could generalize this example to considerations of other types of cakes with cylindrical symmetry. For example, there
are muffins, Boston steamed bread which is steamed in tall cylindrical cans. One could also consider an annular pan, such as a
bundt cake pan. In fact, such problems extend beyond baking cakes to possible heating molds in manufacturing.

This page titled 6.4: Three Dimensional Cake Baking is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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6.5: Laplace’s Equation and Spherical Symmetry
We have seen that Laplace's equation, , arises in electrostatics as an equation for electric potential outside a charge
distribution and it occurs as the equation governing equilibrium temperature distributions. As we had seen in the last chapter,
Laplace’s equation generally occurs in the study of potential theory, which also includes the study of gravitational and fluid
potentials. The equation is named after Pierre-Simon Laplace (1749-1827) who had studied the properties of this equation.
Solutions of Laplace’s equation are called harmonic functions.

Solve Laplace’s equation in spherical coordinates.

Solution
We seek solutions of this equation inside a sphere of radius  subject to the boundary condition as shown in Figure . The
problem is given by Laplace’s equation Laplace’s equation in spherical coordinates

where .

Figure : A sphere of radius  with the boundary condition  .

The boundary conditions are given by

and the periodic boundary conditions

where , and .

The Laplacian in spherical coordinates is given in Problem ?? in Chapter 8.

u = 0∇2

 Example 6.5.1

r 6.5.1
1

( )+ (sinθ )+ = 0,
1

ρ2

∂

∂ρ
ρ2 ∂u

∂ρ

1

sinθρ2

∂

∂θ

∂u

∂θ

1

θρ2 sin2

u∂2

∂ϕ2
(6.5.1)

u = u(ρ, θ,ϕ)

6.5.1 r u(r,θ,ϕ) = g(θ,ϕ)

u(r, θ,ϕ) = g(θ,ϕ), 0 < ϕ < 2π, 0 < θ < π,

u(ρ, θ, 0) = u(ρ, θ, 2π), (ρ, θ, 0) = (ρ, θ, 2π),uϕ uϕ

0 < ρ < ∞ 0 < θ < π

 Note
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Figure : Definition of spherical coordinates . Note that there are different conventions for labeling spherical
coordinates. This labeling is used often in physics.

As before, we perform a separation of variables by seeking product solutions of the form . Inserting
this form into the Laplace equation, we obtain

Multiplying this equation by  and dividing by , yields

Note that the first term is the only term depending upon . Thus, we can separate out the radial part. However, there is still more
work to do on the other two terms, which give the angular dependence. Thus, we have

where we have introduced the first separation constant. This leads to two equations:

and

The final separation can be performed by multiplying the last equation by , rearranging the terms, and introducing a second
separation constant:

From this expression we can determine the differential equations satisfied by  and  :

and

6.5.2 (ρ,θ,ϕ)

u(ρ, θ,ϕ) = R(ρ)Θ(θ)Φ(ϕ)

( )+ (sinθ )+ = 0.
ΘΦ

ρ2

d

dρ
ρ2 dR

dρ

RΦ

sinθρ2

d

dθ

dΘ

dθ

RΘ

θρ2 sin2

Φd2

dϕ2
(6.5.2)

ρ2 RΘΦ

( )+ (sinθ )+ = 0.
1

R

d

dρ
ρ2 dR

dρ

1

sinθΘ

d

dθ

dΘ

dθ

1

θΦsin2

Φd2

dϕ2
(6.5.3)

ρ

− ( ) = (sinθ )+ = −λ,
1

R

d

dρ
ρ2 dR

dρ

1

sinθΘ

d

dθ

dΘ

dθ

1

θΦsin2

Φd2

dϕ2
(6.5.4)

( )−λR = 0
d

dρ
ρ2 dR

dρ
(6.5.5)

(sinθ )+ = −λ.
1

sinθΘ

d

dθ

dΘ

dθ

1

θΦsin2

Φd2

dϕ2
(6.5.6)

θsin2

(sinθ )+λ θ = − = μ.
sinθ

Θ

d

dθ

dΘ

dθ
sin2 1

Φ

Φd2

dϕ2
(6.5.7)

Θ(θ) Φ(ϕ)

sinθ (sinθ )+(λ θ−μ)Θ = 0
d

dθ

dΘ

dθ
sin2 (6.5.8)

+μΦ = 0.
Φd2

dϕ2
(6.5.9)
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Equation  is a key equation which occurs when studying problems possessing spherical symmetry. It is an eigenvalue
problem for , , where

The eigenfunctions of this operator are referred to as spherical harmonics.

We now have three ordinary differential equations to solve. These are the radial equation  and the two angular equations 
- . We note that all three are in Sturm-Liouville form. We will solve each eigenvalue problem subject to appropriate

boundary conditions.

The simplest of these differential equations is Equation  for . We have seen equations of this form many times and the
general solution is a linear combination of sines and cosines. Furthermore, in this problem  is periodic in ,

Since these conditions hold for all  and , we must require that  satisfy the periodic boundary conditions

The eigenfunctions and eigenvalues for Equation  are then found as

Next we turn to solving equation, . We first transform this equation in order to identify the solutions. Let . Then
the derivatives with respect to  transform as

Letting  and noting that , Equation  becomes

We further note that , as can be easily confirmed by the reader.

This is a Sturm-Liouville eigenvalue problem. The solutions consist of a set of orthogonal eigenfunctions. For the special case that 
 Equation  becomes

In a course in differential equations one learns to seek solutions of this equation in the form

This leads to the recursion relation

Setting  and seeking a series solution, one finds that the resulting series does not converge for . This is remedied by
choosing  for , leading to the differential equation

We saw this equation in Chapter 5 in the form

 Note

(6.5.6)

Y (θ,ϕ) = Θ(θ)Φ(ϕ) LY = −λY

L = (sinθ )+ .
1

sinθ

∂

∂θ

∂

∂θ

1

θsin2

∂2

∂ϕ2

(6.5.5)

(6.5.8) (6.5.9)

(6.5.9) Φ(ϕ)

u(ρ, θ,ϕ) ϕ

u(ρ, θ, 0) = u(ρ, θ, 2π), (ρ, θ, 0) = (ρ, θ, 2π).uϕ uϕ

ρ θ Φ(ϕ)

Φ(0) = Φ(2π), (0) = (2π).Φ′ Φ′

(6.5.9)

Φ(ϕ) = {cosmϕ, sinmϕ}, μ = , m = 0, 1, … .m2 (6.5.10)

(6.5.8) x = cosθ

θ

= = −sinθ .
d

dθ

dx

dθ

d

dx

d

dx

y(x) = Θ(θ) θ = 1 −sin2 x2 (6.5.8)

((1 − ) )+(λ− ) y = 0.
d

dx
x2 dy

dx

m2

1 −x2
(6.5.11)

x ∈ [−1, 1]

m = 0 (6.5.11)

((1 − ) )+λy = 0. 
d

dx
x2 dy

dx
(6.5.12)

y(x) = .∑
n=0

∞

anx
n

= .an+2

n(n+1) −λ

(n+2)(n+1)
an

n = 0 x = ±1

λ = ℓ(ℓ +1) ℓ = 0, 1, …

((1 − ) )+ℓ(ℓ +1)y = 0.
d

dx
x2 dy

dx
(6.5.13)
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The solutions of this differential equation are Legendre polynomials, denoted by 

For the more general case, , the differential equation  with  becomes

The solutions of this equation are called the associated Legendre functions. The two linearly independent solutions are denoted by 
 and . The latter functions are not well behaved at , corresponding to the north and south poles of the original

problem. So, we can throw out these solutions in many physical cases, leaving

as the needed solutions. In Table  we list a few of these.

Table :Associated Legendre Functions, .

1 1

The associated Legendre functions are related to the Legendre polynomials by

for  and . We further note that , as one can see in the table. Since  is a
polynomial of degree , then for  and .

The factor of  is known as the Condon-Shortley phase and is useful in quantum mechanics in the treatment of agular
momentum. It is sometimes omitted by some

Furthermore, since the differential equation only depends on  is proportional to . One normalization is given by

The associated Legendre functions also satisfy the orthogonality condition

(1 − ) −2x +ℓ(ℓ +1)y = 0.x2 y′′ y′

(x)Pℓ

m ≠ 0 (6.5.11) λ = ℓ(ℓ +1)

((1 − ) )+(ℓ(ℓ +1) − ) y = 0.
d

dx
x2 dy

dx

m2

1 −x2
(6.5.14)

(x)P m
ℓ

(x)Qm
ℓ

x = ±1

Θ(θ) = (cosθ)P m
ℓ

6.5

6.5.1 (x)P m
n

(x)P m
n (cosθ)P m

n

(x)P 0
0

(x)P 0
1 x cosθ

(x)P 1
1 −(1 − )x2

1

2 −sinθ

(x)P 0
2 (3 − 1)1

2 x2 (3 θ− 1)1
2 cos2

(x)P 1
2 −3x(1 − )x2

1

2 −3cosθsinθ

(x)P 2
2 3(1 − )x2 3 θsin2

(x)P 0
3 (5 − 3x)1

2 x3 (5 θ− 3cosθ)1
2 cos3

(x)P 1
3 − (5 − 1)3

2 x2 (1 − )x2
1

2 − (5 θ− 1)sinθ3
2 cos2

(x)P 2
3 15x(1 − )x2 15cosθ θsin2

(x)P 3
3 −15(1 − )x2

3

2 −15 θsin3

2

(x) = (−1 (x),P m
ℓ

)m (1 − )x2 m/2 dm

dxm
Pℓ (6.5.15)

ℓ = 0, 1, 2, … m = 0, 1, … , ℓ (x) = (x)P 0
ℓ

Pℓ (x)Pℓ

ℓ m > ℓ, (x) = 0dm

dxm
Pℓ (x) = 0P m

ℓ

 Note

(−1)m

, (x)m2 P −m
ℓ

(x)P m
ℓ

(x) = (−1 (x).P −m
ℓ )m

(ℓ −m)!

(ℓ +m)!
P m

ℓ

(x) (x)dx = .∫
1

−1

P m
ℓ

P m

ℓ′

2

2ℓ +1

(ℓ +m)!

(ℓ −m)!
δℓℓ′ (6.5.16)
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The last differential equation we need to solve is the radial equation. With , the radial equation 
 can be written as

The radial equation is a Cauchy-Euler type of equation. So, we can guess the form of the solution to be , where  is a yet
to be determined constant. Inserting this guess into the radial equation, we obtain the characteristic equation

Solving for , we have

Thus, the general solution of the radial equation is

We would normally apply boundary conditions at this point. The boundary condition  is not a homogeneous
boundary condition, so we will need to hold off using it until we have the general solution to the three dimensional problem.
However, we do have a hidden condition. Since we are interested in solutions inside the sphere, we need to consider what happens
at . Note that  is not defined at the origin. Since the solution is expected to be bounded at the origin, we can set .
So, in the current problem we have established that

When seeking solutions outside the sphere, one considers the boundary condition  as . In this case, 

We have carried out the full separation of Laplace’s equation in spherical coordinates. The product solutions consist of the forms

and

for  and . These solutions can be combined to give a complex representation of the product
solutions as

The general solution is then given as a linear combination of these product can be rewritten as solutions. As there are two indices,
we have a double sum:

While this appears to be a complex-valued solution, it can be rewritten as a sum over real functions. The inner sum contains
terms for both  and to give a complex representation of the product solutions as . Adding these contributions,
we have that

can be rewritten as

λ = ℓ(ℓ +1), ℓ = 0, 1, 2, …

(6.5.5)

+2ρ −ℓ(ℓ +1)R = 0.ρ2R′′ R′ (6.5.17)

R(ρ) = ρs s

s(s+1) = ℓ(ℓ +1).

s

s = ℓ, −(ℓ +1).

R(ρ) = a +b .ρℓ ρ−(ℓ+1) (6.5.18)

u(r, θ,ϕ) = g(θ,ϕ)

ρ = 0 ρ−(ℓ+1) b = 0

R(ρ) = a .ρℓ

 Note

R(ρ) → 0 ρ → ∞

R(ρ) = .ρ−(ℓ+1)

u(ρ, θ,ϕ) = (cosθ) cosmϕρℓP m
ℓ

u(ρ, θ,ϕ) = (cosθ) sinmϕρℓP m
ℓ

ℓ = 0, 1, 2, … m = 0, ±1, … , ±ℓ

u(ρ, θ,ϕ) = (cosθ) .ρℓP m
ℓ eimϕ

3

u(ρ, θ,ϕ) = (cosθ) .∑
ℓ=0

∞

∑
m=−ℓ

ℓ

aℓmρ
ℓP m

ℓ
eimϕ (6.5.19)

 Note

m = k m = −k

(cosθ) + (cosθ)aℓkρ
ℓP k

ℓ eikϕ aℓ(−k)ρ
ℓP −k

ℓ e−ikϕ

( coskϕ+ sinkϕ) (cosθ).Aℓk Bℓk ρℓP k
ℓ
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As a simple example we consider the solution of Laplace’s equation in which there is azimuthal symmetry. Let

This function is zero at the poles and has a maximum at the equator. So, this could be a crude model of the temperature
distribution of the Earth with zero temperature at the poles and a maximum near the equator.

Figure : A sphere of radius  with the boundary condition

Solution
In problems in which there is no -dependence, only the  terms of the general solution survives. Thus, we have that

Here we have used the fact that . We just need to determine the unknown expansion coefficients, . Imposing
the boundary condition at , we are lead to

This is a Fourier-Legendre series representation of . Since the Legendre polynomials are an orthogonal set of
eigenfunctions, we can extract the coefficients.

In Chapter 5 we had proven that

 Example : Laplace's Equation with Azimuthal Symmetry6.5.2

u(r, θ,ϕ) = g(θ) = 1 −cos 2θ. 

6.5.3 r

u(r,θ,ϕ) = 1 − cos 2θ.

ϕ m = 0

u(ρ, θ,ϕ) = (cosθ).∑
ℓ=0

∞

aℓρ
ℓPℓ (6.5.20)

(x) = (x)P 0
ℓ Pℓ aℓ

ρ = r

g(θ) = (cosθ)∑
ℓ=0

∞

aℓr
ℓPℓ (6.5.21)

g(θ)

(cosθ) (cosθ) sinθdθ = (x) (x)dx = .∫
π

0

Pn Pm ∫
1

−1

Pn Pm

2

2n+1
δnm
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So, multiplying the expression for  by  and integrating, we obtain the expansion coefficients:

Sometimes it is easier to rewrite  as a polynomial in  and avoid the integration. For this example we see that

Thus, setting  and , we have .

We seek the form

where , and . Since  does not have any  terms, we know that 
. So,

By observation we have  and thus, . Therefore, 

We have found the expansion of  in terms of Legendre polynomials,

Therefore, the nonzero coefficients in the general solution become

and the rest of the coefficients are zero. Inserting these into the general solution, we have the final solution

Spherical Harmonics
The solutions of the angular parts of the problem are often combined into one function of two variables, as problems with spherical
symmetry arise often, leaving the main differences between such problems confined to the radial equation. These functions are
referred to as spherical harmonics, , which are defined with a special normalization as

These satisfy the simple orthogonality relation

, are the spherical harmonics. Spherical harmonics are important in applications from atomic electron configurations
to gravitational fields, planetary magnetic fields, and the cosmic microwave background radiation.

As seen earlier in the chapter, the spherical harmonics are eigenfunctions of the eigenvalue problem , where

g(θ) (cosθ) sinθPm

= g(θ) (cosθ) sinθdθ. aℓ
2ℓ +1

2rℓ
∫

π

0

Pℓ (6.5.22)

g(θ) cosθ

g(θ) = 1 −cos 2θ

= 2 θsin2

= 2 −2 θ.cos2 (6.5.23)

x = cosθ G(x) = g(θ(x)) G(x) = 2 −2x2

G(x) = (x) + (x) + (x),c0P0 c1P1 c2P2

(x) = 1, (x) = xP0 P1 (x) = (3 −1)P2
1
2

x2 G(x) = 2 −2x2 x

= 0c1

2 −2 = (1) + (3 −1) = − + .x2 c0 c2
1

2
x2 c0

1

2
c2

3

2
c2x

2

= −c2
4
3

= 2 + =c0
1
2
c2

4
3

G(x) = (x) − (x).4
3
P0

4
3
P2

g(θ)

g(θ) = (cosθ) − (cosθ).
4

3
P0

4

3
P2 (6.5.24)

= , = ,a0
4

3
a2

4

3

1

r2

u(ρ, θ,ϕ) = (cosθ) − (cosθ)
4

3
P0

4

3
( )
ρ

r

2

P2

= − (3 θ−1)
4

3

2

3
( )
ρ

r

2

cos2 (6.5.25)

(θ,ϕ)Yℓm

(θ,ϕ) = (−1 (cosθ) .Yℓm )m
2ℓ +1

4π

(ℓ −m)!

(ℓ +m)!

− −−−−−−−−−−−−

√ P m
ℓ

eimϕ

(θ,ϕ) (θ,ϕ) sinθdϕdθ = .∫
π

0

∫
2π

0

Yℓm Y ∗
ℓ′m′ δℓℓ′δmm′

 Note

(θ,ϕ)Yℓm

LY = −λY
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This operator appears in many problems in which there is spherical symmetry, such as obtaining the solution of Schrödinger’s
equation for the hydrogen atom as we will see later. Therefore, it is customary to plot spherical harmonics. Because the  ’s are
complex functions, one typically plots either the real part or the modulus squared. One rendition of  is shown in Table 

 for .

Table : The first few spherical harmonics, 

We could also look for the nodal curves of the spherical harmonics like we had for vibrating membranes. Such surface plots on a
sphere are shown in Table . The colors provide for the amplitude of the . We can match these with the shapes in
Table  by coloring the plots with some of the same colors as shown in Table . However, by plotting just the sign of the
spherical harmonics, as in Table , we can pick out the nodal curves much easier.

Table : Spherical harmonic contours for .

L = (sinθ )+ .
1

sinθ

∂

∂θ

∂

∂θ

1

θsin2

∂2

∂ϕ2

Yℓm

| (θ,ϕ)|Yℓm
2

6.5.2 ℓ,m = 0, 1, 2, 3

6.5.2 | (θ,ϕ)|Yℓm
2

6.5.3 | (θ,φ)Yℓm |2

6.5.2 6.5.3

6.5.4

6.5.3 | (θ,ϕ)|Yℓm
2
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Table : In these figures we show the nodal curves of  Along the first column  are the zonal harmonics
seen as  horizontal circles. Along the top diagonal  are the sectional harmonics. These look like orange sections formed

from  vertical circles. The remaining harmonics are tesseral harmonics. They look like a checkerboard pattern formed from
intersections of  horizontal circles and  vertical circles.

Spherical, or surface, harmonics can be further grouped into zonal, sectoral, and tesseral harmonics. Zonal harmonics correspond to
the  modes. In this case, one seeks nodal curves for which . Solutions of this equation lead to constant 
values such that  is a zero of the Legendre polynomial, . The zonal harmonics correspond to the first column in Table 

. Since  is a polynomial of degree , the zonal harmonics consist of  latitudinal circles.

Sectoral, or meridional, harmonics result for the case that . For this case, we note that . This
function vanishes for , or . Therefore, the spherical harmonics can only produce nodal curves for . Thus,
one obtains the meridians satisfying the condition . Solutions of this equation are of the form 
constant. These modes can be seen in Table  in the top diagonal and can be described as  circles passing through the poles,
or longitudinal circles.

Tesseral harmonics consist of the rest of the modes, which typically look like a checker board glued to the surface of a sphere.
Examples can be seen in the pictures of nodal curves, such as Table . Looking in Table  along the diagonals going
downward from left to right, one can see the same number of latitudinal circles. In fact, there are  latitudinal nodal curves in
these figures.

In summary, the spherical harmonics have several representations, as show in Tables - . Note that there are  nodal lines, 
 meridional curves, and  horizontal curves in these figures. The plots in Table  are the typical plots shown in physics

for discussion of the wavefunctions of the hydrogen atom. Those in  are useful for describing gravitational or electric potential
functions, temperature distributions, or wave modes on a spherical surface. The relationships between these pictures and the nodal
curves can be better understood by comparing respective plots. Several modes were separated out in Figures -  to make
this comparison easier.

Figure : Zonal harmonics, , .
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Figure : Zonal harmonics, , .

Figure : Sectoral harmonics, , .

Figure : Tesseral harmonics, , .

Figure : Sectoral harmonics, , .

Figure : Tesseral harmonics, , .
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6.6: Spherically Symmetric Vibrations
Another application of spherical harmonics is a vibrating spherical membrane, such as a balloon. Just as for the two-dimensional
membranes encountered earlier, we let  represent the vibrations of the surface about a fixed radius obeying the wave
equation, , and satisfying the initial conditions

In spherical coordinates, we have (for  constant.)

where .

Figure : A vibrating sphere of radius  with the initial conditions

The boundary conditions are given by the periodic boundary conditions

where , and , and that  should remain bounded.

Noting that the wave equation takes the form

for the spherical harmonics , then we can seek product solutions of the form

Inserting this form into the wave equation in spherical coordinates, we find

u(θ, ϕ, t)

= uutt c2∇2

u(θ, ϕ, 0) = f(θ, ϕ), (θ, ϕ, 0) = g(θ, ϕ).ut

ρ = r =

= ( (sinθ )+ ) ,utt

c2

r2

1

sinθ

∂

∂θ

∂u

∂θ

1

θsin2

u∂2

∂ϕ2
(6.6.1)

u = u(θ, ϕ, t)

6.6.1 r

u(θ, ϕ, 0) = f(θ, ϕ),

(θ, ϕ, 0) = g(θ, ϕ).ut

u(θ, 0, t) = u(θ, 2π, t), (θ, 0, t) = (θ, 2π, t),uϕ uϕ

0 < t 0 < θ < π u = u(θ, ϕ, t)

= Lu,  where  L = −ℓ(ℓ +1)utt

c2

r2
Yℓm Yℓm

(θ, ϕ) = (cos θ)Yℓm P m
ℓ eimϕ

(θ, ϕ, t) = T (t) (θ, ϕ).uℓm Yℓm
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or

The solutions of this equation are easily found as

Therefore, the product solutions are given by

for .

Figure : Modes for a vibrating spherical membrane:

The general solution is found as

An interesting problem is to consider hitting the balloon with a velocity impulse while at rest. An example of such a solution is
shown in Figure . In this images several modes are excited after the impulse.

= − T (t)ℓ(ℓ +1) ,T ′′Yℓm

c2

r2
Yℓm

+ℓ(ℓ +1) T (t)T ′′ c2

r2

T (t) = A cos t +B sin t, = .ωℓ ωℓ ωℓ ℓ(ℓ +1)
− −−−−−

√
c

r

(θ, ϕ, t) = [A cos t +B sin t] (θ, ϕ)uℓm ωℓ ωℓ Yℓm

ℓ = 0, 1, … , m = −ℓ, −ℓ +1, … , ℓ

6.6.2

Row 1 :

Row 2 :

Row 3 :

(1, 0), (1, 1);

(2, 0), (2, 1), (2, 2);

(3, 0), (3, 1), (3, 2), (3, 3).

u(θ, ϕ, t) = [ cos t + sin t] (θ, ϕ).∑
ℓ=0

∞

∑
m=−ℓ

ℓ
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Figure : A moment captured from a simulation of a spherical membrane after hit with a velocity impulse.
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6.7: Baking a Spherical Turkey
During one year as this course was being taught, an instructor returned from the American holiday of Thanksgiving, where it is
customary to cook a turkey. Such a turkey is shown in Figure . This reminded the instructor of a typical problem, such as in
Weinberger, , p. , where one is given a roast of a certain volume and one is asked to find the time it takes to cook one
double the size. In this section, we explore a similar problem for cooking a turkey.

Figure : A 12-lb turkey leaving the oven.

Often during this time of the year, November, articles appear with some scientific evidence as to how to gauge how long it takes to
cook a turkey of a given weight. Inevitably it refers to the story, as told in today.slac.stanford.edu/a/2008/11-26.htm
today.slac.stanford.edu/a/2008/1126.htm that Pief Panofsky, a former SLAC Director, was determined to find a nonlinear equation
for determining cooking times instead of using the rule of thumb of 30 minutes per pound of turkey. He had arrived at the form,

where  is the cooking time and  is the weight of the turkey in pounds. Nowadays, one can go to Wolframalpha.com and enter
the question "how long should you cook a turkey" and get results based on a similar formula.

Before turning to the solution of the heat equation for a turkey, let’s consider a simpler problem.

If it takes 4 hours to cook a 10 pound turkey in a  F oven, then how long would it take to cook a 20 pound turkey at the
same conditions?

Solution
In all of our analysis, we will consider a spherical turkey. While the turkey in Figure  is not quite spherical, we are free to
approximate the turkey as such. If you prefer, we could imagine a spherical turkey like the one shown in Figure .

This problem is one of scaling. Thinking of the turkey as being spherically symmetric, then the baking follows the heat
equation in the form

We can rescale the variables from coordinates  to  as , and . Then the derivatives transform as

6.7.1
(1995 92. )

6.7.1

t =
W 2/3

1.5

t W

 Example 6.7.1

350∘

6.7.1
6.7.2

= ( ) .ut
k

r2

∂

∂r
r2 ∂u

∂r

(r, t) (ρ, τ) r = βρ t = ατ
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Inserting these transformations into the heat equation, we have

To keep conditions the same, then we need . So, the transformation that keeps the form of the heat equation the same,
or makes it invariant, is , and . This is also known as a self-similarity transformation.

Figure : The depiction of a spherical turkey.

So, if the radius increases by a factor of , then the time to cook the turkey (reaching a given temperature,  ), would increase
by . Returning to the problem, if the weight of the doubles, then the volume doubles, assuming that the density is held
constant. However, the volume is proportional to . So,  increases by a factor of . Therefore, the time increases by a

factor of . This give the time for cooking a  turkey as  hours.

The previous example shows the power of using similarity transformations to get general information about solutions of differential
equations. However, we have focussed on using the method of separation of variables for most of the book so far. We should be
able to find a solution to the spherical turkey model using these methods as well. This will be shown in the next example.

Find the temperature,  inside a spherical turkey, initially at , which is F placed in a  F. Assume that the turkey is
of constant density and that the surface of the turkey is maintained at the oven temperature. [We will also neglect convection
and radaition processes inside the oven.]

Solution
The problem can be formulated as a heat equation problem for  :

= = ,
∂

∂r

∂ρ

∂r

∂

∂ρ

1

β

∂

∂ρ

= = .
∂

∂t

∂τ

∂t

∂

∂τ

1

α

∂

∂τ
(6.7.1)

= ( )uτ
α

β2

k

ρ2

∂

∂ρ
ρ2 ∂u

∂ρ

α = β2

r = βρ t = τβ2

6.7.2

β u

β2

r3 r 21/3

≈ 1.58722/3 20lb t = 4( )= ≈ 6.3522/3 28/3

 Example 6.7.2

T (ρ, t) 40∘ 350∘

T (ρ, t)

Tt

T (a, t)

T (ρ, 0)

= ( ) , 0 < ρ < a, t > 0,
k

r2

∂

∂r
r2 ∂T

∂r

= 350, T (ρ, t) finite at ρ = 0, t > 0,

= 40. (6.7.2)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90956?pdf


6.7.3 https://math.libretexts.org/@go/page/90956

We note that the boundary condition is not homogeneous. However, we can fix that by introducing the auxiliary function (the
difference between the turkey and oven temperatures) , where . Then, the problem to be
solved becomes

where .

We can now employ the method of separation of variables. Let . Inserting into the heat equation for , we
have

This give the two ordinary differential equations, the temporal equation,

and the radial equation,

The temporal equation is easy to solve,

However, the radial equation is slightly more difficult. But, making the substitution , it is readily transformed
into a simpler form:

The boundary conditions on  transfer to  and  finite at the origin. In turn, this means that 
 and  has to vanish near the origin. If  does not vanish near the origin, then  is not finite as .

So, we need to solve the boundary value problem

This gives the well-known set of eigenfunctions

Therefore, we have found

The general solution to the auxiliary problem is

This gives the general solution for the temperature as

All that remains is to find the solution satisfying the initial condition, . Inserting , we have

u(ρ, t) = T (ρ, t) −Ta = 350Ta

ut

u(a, t)

u(ρ, 0)

= ( ) , 0 < ρ < a, t > 0,
k

r2

∂

∂r
r2 ∂u

∂r

= 0, u(ρ, t)  finite at ρ = 0, t > 0,

= i− = −310,Ta Ta (6.7.3)

= 40Ti
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This is almost a Fourier sine series. Multiplying by , we have

Now, we can solve for the coefficients,

This gives the final solution,

For generality, the ambient and initial temperature were left in terms of  and , respectively.

The radial equation almost looks familiar when it is multiplied by  :

If it were not for the ’ 2 ’, it would be the zeroth order Bessel equation. This is actually the zeroth order spherical Bessel
equation. In general, the spherical Bessel functions,  and , satisfy

So, the radial solution of the turkey problem is

We further note that

It is interesting to use the above solution to compare roasting different turkeys. We take the same conditions as above. Let the
radius of the spherical turkey be six inches. We will assume that such a turkey takes four hours to cook, i.e., reach a temperature of 

 F. Plotting the solution with 400 terms, one finds that . This gives a "baking time" of . A plot of
the temperature at the center point  of the bird is in Figure .
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Figure : The temperature at the center of a turkey with radius  and .

Using the same constants, but increasing the radius of a turkey to  , we obtain the temperature plot in Figure 

. This radius corresponds to doubling the volume of the turkey. Solving for the time at which the center temperature (at 
 ) reaches , we obtained . Comparing the two temperatures, we find the ratio (using the full

computation of the solution in Maple)

The compares well to

6.7.3 a = 0.5ft k ≈ 0.000089

a = 0.5( ) ft21/3

6.7.4
ρ = a/2 F180∘ t2 = 380.38

= ≈ 1.587401054. 
t2

t1

380.3813709

239.6252478

≈ 1.587401052.22/3
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Figure : The temperature at the center of a turkey with radius  and .

Of course, the temperature is not quite the center of the spherical turkey. The reader can work out the details for other locations.
Perhaps other interesting models would be a spherical shell of turkey with a corse of bread stuffing. Or, one might consider an
ellipsoidal geometry.
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6.8: Schrödinger Equation in Spherical Coordinates
Another important eigenvalue problem in physics is the Schrödinger equation. The time-dependent Schrödinger equation is given
by

Here  is the wave function, which determines the quantum state of a particle of mass  subject to a (time independent)
potential, . From Planck’s constant, , one defines . The probability of finding the particle in an infinitesimal volume, 

, is given by , assuming the wave function is normalized,

One can separate out the time dependence by assuming a special form, , where  is the energy of the
particular stationary state solution, or product solution. Inserting this form into the time-dependent equation, one finds that 
satisfies the time-independent Schrödinger equation,

Assuming that the potential depends only on the distance from the origin, , we can further separate out the radial part of
this solution using spherical coordinates. Recall that the Laplacian in spherical coordinates is given by

Then, the time-independent Schrödinger equation can be written as

Let’s continue with the separation of variables. Assuming that the wave function takes the form , we
obtain

Dividing by , multiplying by , and rearranging, we have

where

We have a function of  equal to a function of the angular variables. So, we set each side equal to a constant. We will judiciously
write the separation constant as . The resulting equations are then

The second of these equations should look familiar from the last section. This is the equation for spherical harmonics,

iℏ = − Ψ+V Ψ.
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So, any further analysis of the problem depends upon the choice of potential, , and the solution of the radial equation. For this,
we turn to the determination of the wave function for an electron in orbit about a proton.

Historically, the first test of the Schrödinger equation was the determination of the energy levels in a hydrogen atom. This is
modeled by an electron orbiting a proton. The potential energy is provided by the Coulomb potential,

Thus, the radial equation becomes

Solution
Before looking for solutions, we need to simplify the equation by absorbing some of the constants. One way to do this is to
make an appropriate change of variables. Let  ar. Then, by the Chain Rule we have

Under this transformation, the radial equation becomes

where . Expanding the second term,

we see that we can define

Using these constants, the radial equation becomes

Expanding the derivative and dividing by ,

The first two terms in this differential equation came from the Laplacian. The third term came from the Coulomb potential. The
fourth term can be thought to contribute to the potential and is attributed to angular momentum. Thus,  is called the angular
momentum quantum number. This is an eigenvalue problem for the radial eigenfunctions  and energy eigenvalues .

(θ,ϕ) = .Yℓm
2ℓ +1

2

(ℓ −m)!

(ℓ +m)!

− −−−−−−−−−−−−

√ P m
ℓ eimϕ (6.8.8)

V (ρ)

 Example : The Hydrogen Atom -  States6.8.1 ℓ = 0

V (ρ) = − .
e2

4π ρϵ0

( )+ [ +E]R = ℓ(ℓ +1)R.
d

dρ
ρ2 dR

dρ

2mρ2

ℏ2

e2

4π ρϵ0
(6.8.9)

ρ =

= = .
d

dρ

dr

dρ

d

dr

1

a

d

dr

( )+ [ +E]u = ℓ(ℓ +1)u,
d

dr
r2 du

dr

2ma2r2

ℏ2

e2

4π arϵ0
(6.8.10)

u(r) = R(ρ)

[ +E]u = [ r+ ]u,
2ma2r2

ℏ2

e2

4π arϵ0

mae2

2πϵ0ℏ2

2mEa2

ℏ2
r2

a

ϵ

=
2πϵ0ℏ2

me2

= −
2mEa2

ℏ2

= − E.
2(2π )ϵ0

2
ℏ2

me4

(6.8.11)

(6.8.12)

( )+ru−ℓ(ℓ +1)u = ϵ u.
d

dr
r2 du

dr
r2 (6.8.13)

r2

+ + u− u = ϵu. u′′ 2

r
u′ 1

r

ℓ(ℓ +1)

r2
(6.8.14)

ℓ
u(r) ϵ
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The solutions of this equation are determined in a quantum mechanics course. In order to get a feeling for the solutions, we will
consider the zero angular momentum case,  :

Even this equation is one we have not encountered in this book. Let’s see if we can find some of the solutions.

First, we consider the behavior of the solutions for large . For large  the second and third terms on the left hand side of the
equation are negligible. So, we have the approximate equation

Therefore, the solutions behave like  for large . For bounded solutions, we choose the decaying solution.

This suggests that solutions take the form  for some unknown function, . Inserting this guess into
Equation , gives an equation for  :

Next we seek a series solution to this equation. Let

Inserting this series into Equation , we have

We can re-index the dummy variable in each sum. Let  in the first sum and  in the second sum. We then find
that

Since this has to hold for all ,

Further analysis indicates that the resulting series leads to unbounded solutions unless the series terminates. This is only
possible if the numerator, , vanishes for . Thus,

Since  is related to the energy eigenvalue, , we have

Inserting the values for the constants, this gives

This is the well known set of energy levels for the hydrogen atom.

The corresponding eigenfunctions are polynomials, since the infinite series was forced to terminate. We could obtain these
polynomials by iterating the recursion equation for the  ’s. However, we will instead rewrite the radial equation .

Let  and define . Then

ℓ = 0

+ + u = ϵu. u′′ 2

r
u′ 1

r
(6.8.15)

r r

− ϵu = 0.u′′ (6.8.16)

u(r) = e± ϵ√ r

u(r) = v(r)e− re√ v(r)
(6.8.15) v(r)

r +2(1 − r) +(1 −2 )v= 0.v′′ ϵ√ v′ ϵ√ (6.8.17)

v(r) = .∑
k=0

∞

ckr
k

(6.8.17)

[k(k−1) +2k] + [1 −2 (k+1)] = 0.∑
k=1

∞

ckr
k−1 ∑

k=1

∞

ϵ√ ckr
k

k = m k = m−1

[m(m+1) +(1 −2m ) ] = 0.∑
k=1

∞

cm ϵ√ cm−1 rm−1

m ≥ 1

= .cm
2m −1ϵ√

m(m+1)
cm−1

2m −1ϵ√ m = n,n = 1, 2 …

ϵ = .
1

4n2

ϵ E

= − .En

me4

2(4π )ϵ0
2
ℏ2n2

= − .En

13.6eV

n2

cm (6.8.17)

x = 2 rϵ√ y(x) = v(r)
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This gives

Rearranging, we have

Noting that , this equation becomes

The resulting equation is well known. It takes the form

Solutions of this equation are the associated Laguerre polynomials. The solutions are denoted by . They can be defined
in terms of the Laguerre polynomials,

The associated Laguerre polynomials are defined as

The Laguerre polynomials were first encountered in Problem 2 in Chapter 5 as an example of a classical orthogonal
polynomial defined on  with weight . Some of these polynomials are listed in Table  and several
Laguerre polynomials are shown in Figure .

The associated Laguerre polynomials are named after the French mathematician Edmond Laguerre (1834-1886). In most

derivation in quantum mechan . where  is the Bohr radius and .

Comparing Equation  with Equation , we find that . In summary, we have made the following
transformations:

1. .
2. .
3. .

Table : Associated Laguerre Functions, . Note that .

1

1

= 2 .
d

dr
ϵ√
d

dx

2 x +(2 −x)2 +(1 −2 )y = 0.ϵ√ y′′ ϵ√ y′ ϵ√

x +(2 −x) + (1 −2 )y = 0.y′′ y′ 1

2 ϵ√
ϵ√

2 =ϵ√
1
n

x +(2 −x) +(n−1)y = 0.y′′ y′ (6.8.18)

x +(α+1 −x) +ny = 0.y′′ y′ (6.8.19)

(x)Lα
n

(x) = ( ) .Ln ex( )
d

dx

n

e−xxn

(x) = (−1 (x).Lm
n−m )m( )

d

dx

m

Ln

 Note

[0, ∞) w(x) = e−x 6.8.1
6.8.1

 Note

icsa =
a0

2
=a0

4πϵ0h
2

me2 = 5.2917 ×  ma0 10−11

(6.8.18) (6.8.19) y(x) = (x)L1
n−1

R(ρ) = u(r), ρ = ar

u(r) = v(r)e− rϵ√

v(r) = y(x) = (x), x = 2 rL1
n−1 ϵ√

6.8.1 (x)Lm
n (x) = (x)L0

n Ln

(x)L
m
n

(x)L
0
0

(x)L
0
1 1 − x

(x)L
0
2 ( − 4x + 2)1

2 x2

(x)L
0
3 (− + 9 − 18x + 6)1

6 x3 x2

(x)L
1
0

(x)L
1
1 2 − x
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1

Figure : Plots of the first few Laguerre polynomials.

Therefore,

However, we also found that . So,

In Figure  we show a few of these solutions.

(x)L
m
n

(x)L
1
2 ( − 6x + 6)1

2 x2

(x)L
1
3 (− + 3 − 36x + 24)1

6 x3 x2

(x)L
2
0

(x)L
2
1 3 − x

(x)L
2
2 ( − 8x + 12)1

2 x2

(x)L
2
3 (−2 + 30 − 120x + 120)1

12 x3 x2

6.8.1

R(ρ) = (2 ρ/a).e− ρ/aϵ√ L1
n−1

ϵ√

2 = 1/nϵ√

R(ρ) = (ρ/na).e−ρ/2naL1
n−1

6.8.2
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Figure : Plots of  for  and  for the  states.

Find the  solutions of the radial equation.

Solution
For the general case, for all , we need to solve the differential equation

Instead of letting , we let

This lead to the differential equation

as before, we let  r to obtain

Noting that , we have

We see that this is once again in the form of the associate Laguerre equation and the solutions are

6.8.2 R(ρ) a = 1 n = 1, 2, 3, 4 ℓ = 0

 Example 6.8.2

ℓ ≥ 0

ℓ ≥ 0

+ + u− u = ϵu. u′′ 2

r
u′ 1

r

ℓ(ℓ +1)

r2
(6.8.20)

u(r) = v(r)e− rϵ√

u(r) = v(r) .rℓe− rϵ√

r +2(ℓ +1 − r) +(1 −2(ℓ +1) )v= 0.v′′ ϵ√ v′ ϵ√ (6.8.21)

x = 2 ϵ√

x +2 [ℓ +1 − ] +[ −ℓ(ℓ +1)] v= 0.y′′ x

2
v′ 1

2 ϵ√

2 = 1/nϵ√

x +2[2(ℓ +1) −x] +(n−ℓ(ℓ +1))v= 0y′′ v′
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So, the solution to the radial equation for the hydrogen atom is given by

Interpretations of these solutions will be left for your quantum mechanics course.

This page titled 6.8: Schrödinger Equation in Spherical Coordinates is shared under a CC BY-NC-SA 3.0 license and was authored, remixed,
and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.

y(x) = (x).L2ℓ+1
n−ℓ−1

R(ρ) = (2 r)rℓe− rϵ√ L2ℓ+1
n−ℓ−1

ϵ√

= ( ) .( )
ρ

2na

ℓ
e−ρ/2naL2ℓ+1

n−ℓ−1

ρ

na
(6.8.22)
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6.9: Curvilinear Coordinates
In order to study solutions of the wave equation, the heat equation, or even Schrödinger’s equation in different geometries, we need
to see how differential operators, such as the Laplacian, appear in these geometries. The most common coordinate systems arising
in physics are polar coordinates, cylindrical coordinates, and spherical coordinates. These reflect the common geometrical
symmetries often encountered in physics.

In such systems it is easier to describe boundary conditions and to make use of these symmetries. For example, specifying that the
electric potential is  on a spherical surface of radius one, we would say  for . However, if
we use spherical coordinates, , then we would say  for , or . This is a much simpler
representation of the boundary condition.

However, this simplicity in boundary conditions leads to a more complicated looking partial differential equation in spherical
coordinates. In this section we will consider general coordinate systems and how the differential operators are written in the new
coordinate systems. This is a more general approach than that taken earlier in the chapter. For a more modern and elegant approach,
one can use differential forms.

We begin by introducing the general coordinate transformations between Cartesian coordinates and the more general curvilinear
coordinates. Let the Cartesian coordinates be designated by  and the new coordinates by . We will assume
that these are related through the transformations

Thus, given the curvilinear coordinates  for a specific point in space, we can determine the Cartesian coordinates, 
, of that point. We will assume that we can invert this transformation: Given the Cartesian coordinates, one can

determine the corresponding curvilinear coordinates.

In the Cartesian system we can assign an orthogonal basis, . As a particle traces out a path in space, one locates its position
by the coordinates . Picking  and  constant, the particle lies on the curve  value of the  coordinate. This
line lies in the direction of the basis vector . We can do the same with the other coordinates and essentially map out a grid in three
dimensional space as sown in Figure . All of the  curves intersect at each point orthogonally and the basis vectors 
lie along the grid lines and are mutually orthogonal. We would like to mimic this construction for general curvilinear coordinates.
Requiring the orthogonality of the resulting basis vectors leads to orthogonal curvilinear coordinates.

10.0 V ϕ(x, y, z) = 10 + + = 1x2 y2 z2

(r, θ,ϕ) ϕ(r, θ,ϕ) = 10 r = 1 ϕ(1, θ,ϕ) = 10

( , , )x1 x2 x3 ( , , )u1 u2 u3

= ( , , )x1 x1 u1 u2 u3

= ( , , )x2 x2 u1 u2 u3

= ( , , )x3 x3 u1 u2 u3 (6.9.1)

( , , )u1 u2 u3

( , , )x1 x2 x3

{i, j, k}

( , , )x1 x2 x3 x2 x3 =x1 x1

i

6.9.1 −xi {i, j, k}
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Figure : Plots of -curves forming an orthogonal Cartesian grid.

As for the Cartesian case, we consider  and  constant. This leads to a curve parametrized by 
. We call this the -curve. Similarly, when  and  are constant we obtain a -curve

and for  and  constant we obtain a -curve. We will assume that these curves intersect such that each pair of curves intersect
orthogonally as seen in Figure . Furthermore, we will assume that the unit tangent vectors to these curves form a right handed
system similar to the  systems for Cartesian coordinates. We will denote these as .

Figure : Plots of general -curves forming an orthogonal grid.

We can determine these tangent vectors from the coordinate transformations. Consider the position vector as a function of the new
coordinates,

6.9.1 xi

u2 u3

: r = ( ) i + ( ) j + ( ) ku1 x1 u1 x2 u1 x3 u1 u1 u1 u3 u2

u1 u2 u3

6.9.2

{i, j, k} { , , }û1 û2 û3

6.9.2 ui
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Then, the infinitesimal change in position is given by

We note that the vectors  are tangent to the -curves. Thus, we define the unit tangent vectors

Solving for the original tangent vector, we have

where

The  ’s are called the scale factors for the transformation. The infinitesimal change in position in the new basis is then given by

The scale factors, .

Determine the scale factors for the polar coordinate transformation.

Solution
The transformation for polar coordinates is

Here we note that , and . The -curves are curves with  const. Thus, these curves are radial
lines. Similarly, the -curves have  const. These curves are concentric circles about the origin as shown in Figure .

r ( , , ) = ( , , ) i + ( , , ) j + ( , , ) k.u1 u2 u3 x1 u1 u2 u3 x2 u1 u2 u3 x3 u1 u2 u3

dr = d + d + d = d . 
∂r

∂u1
u1

∂r

∂u2
u2

∂r

∂u3
u3 ∑

i=1

3
∂r

∂ui
ui

∂r

∂ui
ui

= .ûi

∂r

∂ui

∣
∣

∂r

∂ui
∣
∣

= , 
∂r

∂ui
hiûi

≡ .hi
∣

∣
∣

∂r

∂ui

∣

∣
∣

hi

dr = .∑
i=1

3

hiuiûi

 Note

≡hi ∣
∣

∂r
∂ui

∣
∣

 Example 6.9.1

x = r cosθ, y = r sinθ.

= x, = y, = rx1 x2 u1 = θu2 u1 θ =

u2 r = 6.9.3
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Figure : Plots an orthogonal polar grid.

The unit vectors are easily found. We will denote them by  and . We can determine these unit vectors by first computing 
. Let

Then,

The first vector already is a unit vector. So,

The second vector has length  since . Dividing  by , we have

We can see these vectors are orthogonal  and form a right hand system. That they form a right hand system can
be seen by either drawing the vectors, or computing the cross product,

Since

The scale factors are  and .

Once we know the scale factors, we have that

6.9.3

ûr ûθ
∂r

∂ui

r = x(r, θ)i +y(r, θ)j = r cosθi +r sinθj.

= cosθi +sinθj
∂r

∂r

= −r sinθi +r cosθj.
∂r

∂θ
(6.9.2)

= cosθi +sinθj.ûr

r | −r sinθi +r cosθj| = r ∂r

∂θ
r

= −sinθi +cosθj.ûθ

( ⋅ = 0)ûr ûθ

(cosθi +sinθj) ×(−sinθi +cosθj) = θi × j − θj × icos2 sin2

= k. (6.9.3)

= ,
∂r

∂r
ûr

= r ,
∂r

∂θ
ûθ

= 1hr = rhθ
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The infinitesimal arclength is then given by the Euclidean line element

when the system is orthogonal. The  are referred to as the metric coefficients.

Figure : Infinitesimal area in polar coordinates.

Verify that  directly from  and obtain the Euclidean line element for polar
coordinates.

Solution
We begin by computing

This agrees with the form  when the scale factors for polar coordinates are inserted.

The line element is found as

dr = d .∑
i=1

3

hi uiûi

d = dr ⋅ dr = ds2 ∑
i=1

3

h2
i u2

i

h2
i

6.9.4

 Example 6.9.2

dr = dr +rdθûr ûθ r = r cosθi +r sinθj

dr = d(r cosθi +r sinθj)

= (cosθi +sinθj)dr+r(−sinθi +cosθj)dθ

= dr +rdθ .ûr ûθ (6.9.4)

dr = d∑3
i=1 hi uiûi

ds2 = dr ⋅ dr

= (dr +rdθ ) ⋅ (dr +rdθ )ûr ûθ ûr ûθ

= d + d .r2 r2 θ2 (6.9.5)
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This is the Euclidean line element in polar coordinates.

Also, along the -curves,

This can be seen in Figure  by focusing on the  curve. Along this curve,  and  are constant. So,  and .
This leaves  along the -curve. Similar expressions hold along the other two curves.

Figure : Infinitesimal volume element with sides of length .

We can use this result to investigate infinitesimal volume elements for general coordinate systems as shown in Figure . At a
given point  we can construct an infinitesimal parallelepiped of sides , . This infinitesimal
parallelepiped has a volume of size

The triple scalar product can be computed using determinants and the resulting determinant is call the Jacobian, and is given by

Therefore, the volume element can be written as

ui

dr = d ,  (no summation). hi uiûi

6.9.5 u1 u2 u3 d = 0u2 d = 0u3

dr = dh1 u1û1 u1

6.9.5 dhi ui

6.9.5

( , , )u1 u2 u3 dhi ui i = 1, 2, 3

dV = ⋅ × d d d .
∣

∣
∣

∂r

∂u1

∂r

∂u2

∂r

∂u3

∣

∣
∣ u1 u2 u3

J =
∣

∣
∣
∂ ( , , )x1 x2 x3

∂ ( , , )u1 u2 u3

∣

∣
∣

= ⋅ ×
∣

∣
∣

∂r

∂u1

∂r

∂u2

∂r

∂u3

∣

∣
∣

= .

∣

∣

∣
∣
∣
∣

∂x1

∂u1

∂x1

∂u2

∂x1

∂u3

∂x2

∂u1

∂x2

∂u2

∂x2

∂u3

∂x3

∂u1

∂x3

∂u2

∂x3

∂u3

∣

∣

∣
∣
∣
∣

(6.9.6)

dV = Jd d d = d d d .u1 u2 u3

∣

∣
∣
∂ ( , , )x1 x2 x3

∂ ( , , )u1 u2 u3

∣

∣
∣ u1 u2 u3
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Determine the volume element for cylindrical coordinates , given by

Solution
Here, we have  as displayed in Figure . Then, the Jacobian is given by

Thus, the volume element is given as

This result should be familiar from multivariate calculus.

 Example 6.9.3

(r, θ, z)

x = r cosθ,

y = r sinθ,

z = z.

(6.9.7)

(6.9.8)

(6.9.9)

( , , ) = (r, θ, z)u1 u2 u3 6.9.6

J =∣

∂(x,y,z)

∂(r,θ,z)
∣

=

∣

∣

∣
∣
∣
∣

∂x
∂r

∂x
∂θ

∂x

∂z

∂y

∂r

∂y

∂θ

∂y

∂z

∂z
∂r

∂z
∂θ

∂z

∂z

∣

∣

∣
∣
∣
∣

=

∣

∣

∣
∣

cosθ

−r sinθ

0

sinθ

r cosθ

0

0

0

1

∣

∣

∣
∣

= r

(6.9.10)

dV = rdrdθdz.
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Figure : Cylindrical coordinate system.

Another approach is to consider the geometry of the infinitesimal volume element. The directed edge lengths are given by 
 as seen in Figure . The infinitesimal area element of for the face in direction  is found from a simple cross

product,

Since these are unit vectors, the areas of the faces of the infinitesimal volumes are .

The infinitesimal volume is then obtained as

Thus, . Of course, this should not be a surprise since

For polar coordinates, determine the infinitesimal area element.

Solution
In an earlier example, we found the scale factors for polar coordinates as  and . Thus, 

. Also, the last example for cylindrical coordinates will yield similar results if we already know the

6.9.6

d = dsi hi uiûi 6.9.2 ûk

d = d ×d = d d × .Ak si sj hihj ui ujûi ûj

d = d dAk hihj ui uj

dV = |d ⋅ d | = d d d | ⋅ ( × )| .sk Ak hihjhk ui uj uk ûi ûk ûj

dV = d d dh1h2h3 u1 u1 u3

J = ⋅ × = | ⋅ × | = .
∣

∣
∣

∂r

∂u1

∂r

∂u2

∂r

∂u3

∣

∣
∣ h1û1 h2û2 h3û3 h1h2h3

 Example 6.9.4

= 1hr = rhθ
dA = drdθ = rdrdθhrhθ
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scales factors without having to compute the Jacobian directly. Furthermore, the area element perpendicular to the z-coordinate
gives the polar coordinate system result.

Next we will derive the forms of the gradient, divergence, and curl in curvilinear coordinates using several of the identities in
section ??. The results are given here for quick reference.

Gradient, divergence and curl in orthogonal curvilinear coordinates.

Derivation of the gradient form.

We begin the derivations of these formulae by looking at the gradient, , of the scalar function . We recall that the
gradient operator appears in the differential change of a scalar function,

Since

we also have that

Comparing these two expressions for , we determine that the components of the del operator can be written as

and thus the gradient is given by

 Note

∇ϕ =

=

∇ ⋅ F =

∇ ×F =

ϕ =∇2

∑
i=1

3 ûi

hi

∂ϕ

∂ui

+ + ⋅
û1

h1

∂ϕ

∂u1

û2

h2

∂ϕ

∂u2

û3

h3

∂ϕ

∂u3

( ( ) + ( ) + ( ))
1

h1h2h3

∂

∂u1
h2h3F1

∂

∂u2
h1h3F2

∂

∂u3
h1h2F3

.
1

h1h2h3

∣

∣

∣
∣
∣

h1û1

∂
∂u1

F1h1

h2û2

∂
∂u2

F2h2

h3û3

∂
∂u3

F3h3

∣

∣

∣
∣
∣

( ( )+ ( )
1

h1h2h3

∂

∂u1

h2h3

h1

∂ϕ

∂u1

∂

∂u2

h1h3

h2

∂ϕ

∂u2

+ ( ))
∂

∂u3

h1h2

h3

∂ϕ

∂u3

(6.9.11)

(6.9.12)

(6.9.13)

(6.9.14)

 Note

∇ϕ ϕ ( , , )u1 u2 u3

dϕ = ∇ϕ ⋅ dr = d .∑
i=1

3 ∂ϕ

∂ui
ui

dr = d∑
i=1

3

hi uiûi (6.9.15)

dϕ = ∇ϕ ⋅ dr = (∇ϕ d .∑
i=1

3

)ihi ui

dϕ

(∇ϕ =)i
1

hi

∂ϕ

∂ui

∇ϕ = + + .
û1

h1

∂ϕ

∂u1

û2

h2
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û3
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(6.9.16)
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Derivation of the divergence form.

Next we compute the divergence,

We can do this by computing the individual terms in the sum. We will compute .

Using Equation , we have that

Then

Solving for , gives

Inserting this result into  and using the vector identity  from section ??,

we have

The second term of this result vanishes by vector identity ,

Since , the first term can be evaluated as

Similar computations can be carried out for the remaining components, leading to the sought expression for the divergence in
curvilinear coordinates:

Write the divergence operator in cylindrical coordinates.

Solution
In this case we have

 Note

∇ ⋅ F = ∇ ⋅ ( ) .∑
i=1

3

Fiûi

∇ ⋅ ( )F1û1

(6.9.16)

∇ = .ui
ûi

hi

∇ ×∇ = =u2 u3
×û2 û3

h2h3

û1

h2h3

û1

= ∇ ×∇ .û1 h2h3 u2 u3

∇ ⋅ ( )F1û1 2c

∇ ⋅ (fA) = f∇ ⋅ A +A ⋅ ∇f ,

∇ ⋅ ( )F1û1 = ∇ ⋅ ( ∇ ×∇ )F1h2h3 u2 u3

= ∇ ( ) ⋅ ∇ ×∇ + ∇ ⋅ (∇ ×∇ )F1h2h3 u2 u3 F1h2h2 u2 u3 (6.9.17)

3c

∇ ⋅ (∇f ×∇g) = 0.

∇ ×∇ =u2 u3
1̂1

h2h3

∇ ⋅ ( ) = ∇ ( ) ⋅ = ( ) .F1û1 F1h2h3
û1

h2h3

1

h1h2h3

∂

∂u1
F1h2h3

∇ ⋅ F = ( ( ) + ( ) + ( )) .
1

h1h2h3

∂

∂u1
h2h3F1

∂

∂u2
h1h3F2

∂

∂u3
h1h2F3 (6.9.18)
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We now turn to the curl operator. In this case, we need to evaluate

Again we focus on one term, . Using the vector identity ,

we have

The curl of the gradient vanishes, leaving

Since , we have

The other terms can be handled in a similar manner. The overall result is that

This can be written more compactly as

Write the curl operator in cylindrical coordinates.

Solution

∇ ⋅ F = ( ( ) + ( ) + ( ))
1

hrhθhz
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Fz (6.9.19)
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= ∇ ×∇ −∇ ( ) ×∇F1h1 u1 F1h1 u1 (6.9.20)
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Finally, we turn to the Laplacian. In the next chapter we will solve higher dimensional problems in various geometric settings such
as the wave equation, the heat equation, and Laplace’s equation. These all involve knowing how to write the Laplacian in different
coordinate systems. Since , we need only combine the results from Equations  and  for the
gradient and the divergence in curvilinear coordinates. This is straight forward and gives

The results of rewriting the standard differential operators in cylindrical and spherical coordinates are shown in Problems ?? and ??.
In particular, the Laplacians are given as

This page titled 6.9: Curvilinear Coordinates is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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ϕ = ∇ ⋅ ∇ϕ∇2 (6.9.16) (6.9.18)
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 Definition : Cylindrical Coordinates6.9.1

f = (r )+ + .∇2 1
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 Definition : Spherical Coordinates6.9.2
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6.10: Problems

A rectangular plate  with heat diffusivity constant  is insulated on the edges  and is kept at
constant zero temperature on the other two edges. Assuming an initial temperature of  , use separation of
variables  find the general solution.

Solve the following problem.

Consider Laplace’s equation on the unit square,  1. Let  for  and 
 for . Carry out the needed separation of variables and write down the product solutions satisfying these

boundary conditions.

Consider a cylinder of height  and radius .

a. Write down Laplace’s Equation for this cylinder in cylindrical coordinates.
b. Carry out the separation of variables and obtain the three ordinary differential equations that result from this problem.
c. What kind of boundary conditions could be satisfied in this problem in the independent variables?

Consider a square drum of side  and a circular drum of radius .

a. Rank the modes corresponding to the first 6 frequencies for each.
b. Write each frequency (in  ) in terms of the fundamental (i.e., the lowest frequency.)
c. What would the lengths of the sides of the square drum have to be to have the same fundamental frequency? (Assume that 

 for each one.)

We presented the full solution of the vibrating rectangular membrane in Equation 6.1.26. Finish the solution to the vibrating
circular membrane by writing out a similar full solution.

A copper cube  on a side is heated to . The block is placed on a surface that is kept at . The sides of the
block are insulated, so the normal derivatives on the sides are zero. Heat flows from the top of the block to the air governed by
the gradient . Determine the temperature of the block at its center after 1.o minutes. Note that the thermal
diffusivity is given by , where  is the thermal conductivity,  is the density, and  is the specific heat capacity.

 Exercise 6.10.1

0 ≤ x ≤ L , 0 ≤ y ≤ H k y = 0, H

u(x, y, 0) = f(x, y)

t

 Exercise 6.10.2

+ + = 0, 0 < x < 2π, 0 < y < π, 0 < z < 1,uxx uyy uzz

u(x, y, 0) = sinx siny, u(x, y, z) = 0 on other faces. 

 Exercise 6.10.3

+ = 0, 0 ≤ x, y ≤uxx uyy u(0, y) = 0, u(1, y) = 0 0 < y < 1

(x, 0) = 0uy 0 < y < 1

 Exercise 6.10.4

H a

 Exercise 6.10.5

s a

Hz

c = 1.0

 Exercise 6.10.6

 Exercise 6.10.7

10.0 cm C100∘ C0∘

= − C/muz 10∘

k = K
ρcp

K ρ cp
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Consider a spherical balloon of radius . Small deformations on the surface can produce waves on the balloon’s surface.

a. Write the wave equation in spherical polar coordinates. (Note:  is constant!)
b. Carry out a separation of variables and find the product solutions for this problem.
c. Describe the nodal curves for the first six modes.
d. For each mode determine the frequency of oscillation in  assuming .

Consider a circular cylinder of radius  and height   which obeys the steady state heat equation

Find the temperature distribution, , given that  , and heat is lost through the sides due to
Newton’s Law of Cooling

for .

The spherical surface of a homogeneous ball of radius one in maintained at zero temperature. It has an initial temperature
distribution  . Assuming a heat diffusivity constant , find the temperature throughout the sphere, .

Determine the steady state temperature of a spherical ball maintained at the temperature

[Hint - Rewrite the problem in spherical coordinates and use the properties of spherical harmonics.]

A hot dog initially at temperature  is put into boiling water at . Assume the hot dog is  long, has a radius of
, and the heat constant is .

a. Find the general solution for the temperature. [Hint: Solve the heat equation for , where 
 is the temperature of the hot dog.]

b. Indicate how one might proceed with the remaining information in order to determine when the hot dog is cooked; i.e.,
when the center temperature is .

This page titled 6.10: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

 Exercise 6.10.8

a

ρ

Hz c = 1.0 m/s

 Exercise 6.10.9

R = 4.00 cm H = 20.0 cm

+ + .urr

1

r
ur uzz

u(r, z) u(r, 0) = C, u(r, 20) =0∘ C20∘

= 0,[ +hu]ur r=4

h = 1.0 cm−1

 Exercise 6.10.10

u(ρ, 0) = C100∘ k u(ρ, θ, ϕ, t)

 Exercise 6.10.11

u(x, y, z) = +2 +3 , ρ = 1.x2 y2 z2

 Exercise 6.10.12

C50∘ C100∘ 12.0 cm
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u(r, z, t) = T (r, z, t) −100
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7.0: Prelude to Green's Functions and Nonhomogeneous Problems

"The young theoretical physicists of a generation or two earlier subscribed to the belief
that: If you haven’t done something important by age 30, you never will. Obviously, they
were unfamiliar with the history of George Green, the miller of Nottingham." - Julian
Schwinger (1918-1994)

The wave equation, heat equation, and Laplace's equation are typical homogeneous partial differential equations. They can be
written in the form

where  is a differential operator. For example, these equations can be written as

In this chapter we will explore solutions of nonhomogeneous partial differential equations,

by seeking out the so-called Green’s function. The history of the Green’s function dates back to 1828, when George Green
published work in which he sought solutions of Poisson’s equation  for the electric potential  defined inside a bounded
volume with specified boundary conditions on the surface of the volume. He introduced a function now identified as what Riemann
later coined the "Green’s function". In this chapter we will derive the initial value Green’s function for ordinary differential
equations. Later in the chapter we will return to boundary value Green’s functions and Green’s functions for partial differential
equations.

George Green (1793-1841), a British mathematical physicist who had little formal education and worked as a miller and a
baker, published An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism in which
he not only introduced what is now known as Green’s function, but he also introduced potential theory and Green’s Theorem in
his studies of electricity and magnetism. Recently his paper was posted at arXiv.org, arXiv:o807.0088.

As a simple example, consider Poisson’s equation,

Let Poisson’s equation hold inside a region  bounded by the surface  as shown in Figure . This is the nonhomogeneous
form of Laplace’s equation. The nonhomogeneous term, , could represent a heat source in a steady-state problem or a charge
distribution (source) in an electrostatic problem.

Lu(x) = 0,

L

( − )u
∂2

∂t2
c2∇2

( −k )u
∂

∂t
∇2

u∇2

= 0,

= 0,

= 0. (7.0.1)

Lu(x) = f(x),

u = f∇2 u

 Note

u(r) = f(r).∇2

Ω ∂Ω 7.0.1

f(r)
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Figure : Let Poisson’s equation hold inside region  bounded by surface . The Dirac delta function satisfies

Now think of the source as a point source in which we are interested in the response of the system to this point source. If the point
source is located at a point , then the response to the point source could be felt at points r. We will call this response .
The response function would satisfy a point source equation of the form

Here  is the Dirac delta function, which we will consider in more detail in Section 9.4. A key property of this generalized
function is the sifting property,

The connection between the Green’s function and the solution to Poisson’s equation can be found from Green’s second identity:

Letting  and , we have

Solving for , we have

If both  and  satisfied Dirichlet conditions,  on , then the last integral vanishes and we are left with

7.0.1 Ω ∂Ω

δ(r) = 0, r ≠ 0,
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Ω

r
′ G(r, )r
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′ (7.0.2)

u ( )r
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u ( ) =r
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r
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+ [u(r)∇G(r, ) −G(r, ) ∇u(r)] ⋅ ndS.∫
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r
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We note that in the following the volume and surface integrals and differentiation using  are performed using the -
coordinates.

In many applications there is a symmetry,

Then, the result can be written as

So, if we know the Green’s function, we can solve the nonhomogeneous differential equation. In fact, we can use the Green’s
function to solve nonhomogenous boundary value and initial value problems. That is what we will see develop in this chapter as we
explore nonhomogeneous problems in more detail. We will begin with the search for Green’s functions for ordinary differential
equations.

7.0: Prelude to Green's Functions and Nonhomogeneous Problems is shared under a not declared license and was authored, remixed, and/or
curated by LibreTexts.

7: Green's Functions and Nonhomogeneous Problems by Russell Herman is licensed CC BY-NC-SA 3.0. Original source:
https://people.uncw.edu/hermanr/pde1/PDEbook.

 Note

∇ r

 Note
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′
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7.1: Initial Value Green’s Functions
In this section we will investigate the solution of initial value problems involving nonhomogeneous differential equations using
Green’s functions. Our goal is to solve the nonhomogeneous differential equation

subject to the initial conditions

Since we are interested in initial value problems, we will denote the independent variable as a time variable, .

Equation  can be written compactly as

where  is the differential operator

The solution is formally given by

The inverse of a differential operator is an integral operator, which we seek to write in the form

The function  is referred to as the kernel of the integral operator and is called the Green’s function.

 is called a Green's function.

In the last section we solved nonhomogeneous equations like Equation  using the Method of Variation of Parameters.
Letting,

we found that we have to solve the system of equations

This system is easily solved to give

We note that the denominator in these expressions involves the Wronskian of the solutions to the homogeneous problem, which is
given by the determinant

a(t) (t)+b(t) (t)+c(t)y(t) = f(t),y′′ y′ (7.1.1)

y(0) = (0) = .y0 y′ v0

t

(7.1.1)

L[y] = f , 

L

L= a(t) +b(t) +c(t).
d2

dt2
d

dt

y = [f ].L−1

y(t) = ∫ G(t, τ)f(τ)dτ .

G(t, τ)

 Note

G(t, τ)

(7.1.1)

(t) = (t) (t)+ (t) (t),yp c1 y1 c2 y2 (7.1.2)

(t) (t)+ (t) (t) = 0.c′1 y1 c′2 y2

(t) (t)+ (t) (t) = .c′1 y′1 c′2 y′2
f(t)

q(t)
(7.1.3)

(t) =−c′1
f(t) (t)y2

a(t) [ (t) (t)− (t) (t)]y1 y′2 y′1 y2

(t) = .c′2
f(t) (t)y1

a(t) [ (t) (t)− (t) (t)]y1 y′2 y′1 y2
(7.1.4)

W ( , ) (t) = .y1 y2
∣

∣

∣
∣

(t)y1

(t)y′1

(t)y2

(t)y′2

∣

∣

∣
∣
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When  and  are linearly independent, then the Wronskian is not zero and we are guaranteed a solution to the above
system.

So, after an integration, we find the parameters as

where  and  are arbitrary constants to be determined from the initial conditions.

Therefore, the particular solution of Equation  can be written as

\[y_{p}(t)=y_{2}(t) \int_{t_{1}}^{t} \frac{f(\tau) y_{1}(\tau)}{a(\tau) W(\tau)} d \tau-y_{1}(t) \int_{t_{0}}^{t} \frac{f(\tau)
y_{2}(\tau)}{a(\tau) W(\tau)} d \tau .\label{eq:6}\

We begin with the particular solution (Equation ) of the nonhomogeneous differential equation Equation . This can be
combined with the general solution of the homogeneous problem to give the general solution of the nonhomogeneous differential
equation:

However, an appropriate choice of  and  can be found so that we need not explicitly write out the solution to the homogeneous
problem, . However, setting up the solution in this form will allow us to use  and  to determine particular
solutions which satisfies certain homogeneous conditions. In particular, we will show that Equation  can be written in the
form

where the function  will be identified as the Green’s function.

The goal is to develop the Green’s function technique to solve the initial value problem

We first note that we can solve this initial value problem by solving two separate initial value problems. We assume that the
solution of the homogeneous problem satisfies the original initial conditions:

We then assume that the particular solution satisfies the problem

Since the differential equation is linear, then we know that

is a solution of the nonhomogeneous equation. Also, this solution satisfies the initial conditions:

Therefore, we need only focus on finding a particular solution that satisfies homogeneous initial conditions. This will be done by
finding values for  and  in Equation  which satisfy the homogeneous initial conditions,  and .

First, we consider . We have

(t)y1 (t)y2

(t) =− dτc1 ∫
t

t0

f(τ) (τ)y2

a(τ)W (τ)

(t) = dτc2 ∫
t

t1

f(τ) (τ)y1

a(τ)W (τ)
(7.1.5)

t0 t1

(7.1.1)

(???) (7.1.1)

(t) = (t)+ (t)+ (t) dτ − (t) dτ .yp c1y1 c2y2 y2 ∫
t

t1

f(τ) (τ)y1

a(τ)W (τ)
y1 ∫

t

t0

f(τ) (τ)y2

a(τ)W (τ)
(7.1.6)

t0 t1
(t)+ (t)c1y1 c2y2 t0 t1

(7.1.6)

y(t) = (t)+ (t)+ G(t, τ)f(τ)dτ ,c1y1 c2y2 ∫
t

0

(7.1.7)

G(t, τ)

a(t) (t)+b(t) (t)+c(t)y(t) = f(t), y(0) = , (0) = .y′′ y′ y0 y′ v0 (7.1.8)

a(t) (t)+b(t) (t)+c(t) (t) = 0, (0) = , (0) = .y′′h y′h yh yh y0 y′h v0 (7.1.9)

a(t) (t)+b(t) (t)+c(t) (t) = f(t), (0) = 0, (0) = 0. y′′p y′p yp yp y′p (7.1.10)

y(t) = (t)+ (t)yh yp

y(0) = (0)+ (0) = +0 = ,yh yp y0 y0

(0) = (0)+ (0) = +0 = .y′ y′h y′p v0 v0

t0 t1 (???) (0) = 0yp (0) = 0y′p

(0) = 0yp

(0) = (0) dτ − (0) dτ .yp y2 ∫
0

t1

f(τ) (τ)y1

a(τ)W (τ)
y1 ∫

0

t0

f(τ) (τ)y2

a(τ)W (τ)
(7.1.11)
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Here,  and  are taken to be any solutions of the homogeneous differential equation. Let’s assume that  and 
. Then, we have

We can force  if we set .

Now, we consider . First we differentiate the solution and find that

since the contributions from differentiating the integrals will cancel. Evaluating this result at , we have

Assuming that , we can set .

Thus, we have found that

This result is in the correct form and we can identify the temporal, or initial value, Green’s function. So, the particular solution is
given as

where the initial value Green’s function is defined as

We summarize

The solution of the initial value problem,

takes the form

where

is the Green’s function and  are solutions of the homogeneous equation satisfying

(t)y1 (t)y2 (0) = 0y1
≠ (0) = 0y2

(0) = (0) dτyp y2 ∫
0

t1

f(τ) (τ)y1

a(τ)W (τ)
(7.1.12)

(0) = 0yp = 0t1

(0) = 0y′p

(t) = (t) dτ − (t) dτ ,y′p y′2 ∫
t

0

f(τ) (τ)y1

a(τ)W (τ)
y′1 ∫

t

t0

f(τ) (τ)y2

a(τ)W (τ)
(7.1.13)

t = 0

(0) =− (0) dτ .y′p y′1 ∫
0

t0

f(τ) (τ)y2

a(τ)W (τ)
(7.1.14)

(0) ≠ 0y′1 = 0t0

(x)yp = (t) dτ − (t) dτy2 ∫
t

0

f(τ) (τ)y1

a(τ)W (τ)
y1 ∫

t

0

f(τ) (τ)y2

a(τ)W (τ)

= [ ] f(τ)dτ∫
t

0

(τ) (t)− (t) (τ)y1 y2 y1 y2

a(τ)W (τ)
(7.1.15)

(t) = G(t, τ)f(τ)dτ ,yp ∫
t

0

(7.1.16)

G(t, τ) = .
(τ) (t)− (t) (τ)y1 y2 y1 y2

a(τ)W (τ)

 Solution of IVP Using the Green's Function

a(t) (t)+b(t) (t)+c(t)y(t) = f(t), y(0) = , (0) = ,y′′ y′ y0 y′ v0

y(t) = (t)+ G(t, τ)f(τ)dτ ,yh ∫
t

0

(7.1.17)

G(t, τ) =
(τ) (t)− (t) (τ)y1 y2 y1 y2

a(τ)W (τ)
(7.1.18)

, ,y1 y2 yh

(0) = 0, (0) ≠ 0, (0) ≠ 0, (0) = 0, (0) = , (0) = .y1 y2 y′1 y′2 yh y0 y′
h

v0
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Solve the forced oscillator problem

Solution
We first solve the homogeneous problem with nonhomogeneous initial conditions:

The solution is easily seen to be .

Next, we construct the Green’s function. We need two linearly independent solutions, , to the homogeneous
differential equation satisfying different homogeneous conditions,  and . The simplest solutions are 

 and . The Wronskian is found as

Since  in this problem, we compute the Green’s function,

Note that the Green’s function depends on . While this is useful in some contexts, we will use the expanded form when
carrying out the integration.

We can now determine the particular solution of the nonhomogeneous differential equation. We have

Therefore, the solution of the nonhomogeneous problem is the sum of the solution of the homogeneous problem and this
particular solution: .

This page titled 7.1: Initial Value Green’s Functions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

 Example 7.1.1

+x = 2 cos t, x(0) = 4, (0) = 0.x′′ x′

+ = 0, (0) = 4, (0) = 0.x′′
h

xh xh x′
h

(t) = 4 cos txh

(x), (x)y1 y2
(0) = 0y1 (0) = 0y′2

(t) = sin ty1 (t) = cos ty2

W (t) = (t) (t)− (t) (t) =− t− t =−1.y1 y′2 y′1 y2 sin2 cos2

a(t) = 1

G(t, τ) =
(τ) (t)− (t) (τ)y1 y2 y1 y2

a(τ)W (τ)

= sin t cos τ −sinτ cos t

= sin(t−τ). (7.1.19)

t−τ

(t)xp = G(t, τ)f(τ)dτ∫
t

0

= (sin t cos τ −sinτ cos t)(2 cos τ)dτ∫
t

0

= 2 sin t τdτ −2 cos t sinτ cos τdτ∫
t

0

cos2 ∫
t

0

= 2 sin t −2 cos t[ + sin2τ]
τ

2

1

2

t

0

[ τ]
1

2
sin2

t

0

= t sin t. (7.1.20)

x(t) = 4 cos t+ t sin t
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7.2: Boundary Value Green’s Functions
We solved nonhomogeneous initial value problems in Section 7.1 using a Green’s function. In this section we will extend this
method to the solution of nonhomogeneous boundary value problems using a boundary value Green’s function. Recall that the goal
is to solve the nonhomogeneous differential equation

where  is a differential operator and  satisfies boundary conditions at  and .. The solution is formally given by

The inverse of a differential operator is an integral operator, which we seek to write in the form

The function  is referred to as the kernel of the integral operator and is called the Green’s function.

We will consider boundary value problems in Sturm-Liouville form,

with fixed values of  at the boundary,  and . However, the general theory works for other forms of
homogeneous boundary conditions.

We seek the Green’s function by first solving the nonhomogeneous differential equation using the Method of Variation of
Parameters. Recall this method from Section B.3.3. We assume a particular solution of the form

which is formed from two linearly independent solution of the homogeneous problem, . We had found that the
coefficient functions satisfy the equations

Solving this system, we obtain

where  is the Wronskian. Integrating these forms and inserting the results back into the particular
solution, we find

where  and  are to be determined using the boundary values. In particular, we will seek  and  so that the solution to the
boundary value problem can be written as a single integral involving a Green’s function. Note that we can absorb the solution to the
homogeneous problem, , into the integrals with an appropriate choice of limits on the integrals.

We now look to satisfy the conditions  and . First we use solutions of the homogeneous differential equation that
satisfy ,  and . Evaluating  at , we have

L[y] = f , a ≤ x ≤ b,

L y(x) x = a x = b

y = [f ]. L−1

y(x) = G(x, ξ)f(ξ)dξ.∫
b

a

G(x, ξ)

(p(x) )+q(x)y(x) = f(x), a < x < b, 
d

dx

dy(x)

dx
(7.2.1)

y(x) y(a) = 0 y(b) = 0

(x) = (x) (x) + (x) (x),yp c1 y1 c2 y2

(x), i = 1, 2yi

(x) (x) + (x) (x)c′
1 y1 c′

2 y2

(x) (x) + (x) (x)c′
1 y′

1 c′
2 y′

2

= 0

= .
f(x)

p(x)
(7.2.2)

(x) = − ,c′
1

fy2

pW ( , )y1 y2

(x) = ,c′
1

fy1

pW ( , )y1 y2

W ( , ) = −y1 y2 y1y′
2 y′

1y2

y(x) = (x) dξ− (x) dξ,y2 ∫
x

x1

f(ξ) (ξ)y1

p(ξ)W (ξ)
y1 ∫

x

x0

f(ξ) (ξ)y2

p(ξ)W (ξ)

x0 x1 x0 x1

(x)yh

y(a) = 0 y(b) = 0
(a) = 0y1 (b) = 0y2 (b) ≠ 0, (a) ≠ 0y1 y2 y(x) x = 0

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90269?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/07%3A_Green's_Functions/7.02%3A_Boundary_Value_Greens_Functions
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/07%3A_Green's_Functions/7.01%3A_Initial_Value_Greens_Functions
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/04%3A_Sturm-Liouville_Boundary_Value_Problems/4.01%3A_Sturm-Liouville_Operators
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/12%3A_B_-_Ordinary_Differential_Equations_Review/12.03%3A_Forced_Systems


7.2.2 https://math.libretexts.org/@go/page/90269

We can satisfy the condition at  if we choose .

Similarly, at  we find that

This expression vanishes for .

So, we have found that the solution takes the form

This solution can be written in a compact form just like we had done for the initial value problem in Section 7.1. We seek a Green’s
function so that the solution can be written as a single integral. We can move the functions of  under the integral. Also, since 

, we can flip the limits in the second integral. This gives

This result can now be written in a compact form:

The solution of the boundary value problem

takes the form

where the Green’s function is the piecewise defined function

where  and  are solutions of the homogeneous problem satisfying  and .

The Green’s function satisfies several properties, which we will explore further in the next section. For example, the Green’s
function satisfies the boundary conditions at  and . Thus,

Also, the Green’s function is symmetric in its arguments. Interchanging the arguments gives

y(a) = (a) dξ− (a) dξy2 ∫
a

x1

f(ξ) (ξ)y1

p(ξ)W (ξ)
y1 ∫

a

x0

f(ξ) (ξ)y2

p(ξ)W (ξ)

= (a) dξ.y2 ∫
a

x1

f(ξ) (ξ)y1

p(ξ)W (ξ)
(7.2.3)

x = a = ax1

x = b

y(b) = (b) dξ− (b) dξy2 ∫
b

x1

f(ξ) (ξ)y1

p(ξ)W (ξ)
y1 ∫

b

x0

f(ξ) (ξ)y2

p(ξ)W (ξ)

= − (b) dξ.y1 ∫
b

x0

f(ξ) (ξ)y2

p(ξ)W (ξ)
(7.2.4)

= bx0

y(x) = (x) dξ− (x) dξ.y2 ∫
x

a

f(ξ) (ξ)y1

p(ξ)W (ξ)
y1 ∫

x

b

f(ξ) (ξ)y2

p(ξ)W (ξ)
(7.2.5)

x

a < x < b

y(x) = d + dξ∫
x

a

f(ξ) (ξ) (x)y1 y2

p(ξ)W (ξ)
ξ
~

∫
b

x

f(ξ) (x) (ξ)y1 y2

p(ξ)W (ξ)
(7.2.6)

 Boundary Value Green's Function

(p(x) )+q(x)y(x) = f(x), a < x < b,d

dx

dy(x)

dx

y(a) = 0, y(b) = 0.
(7.2.7)

y(x) = G(x, ξ)f(ξ)dξ,∫
b

a

(7.2.8)

G(x, ξ) =
⎧

⎩
⎨

,(ξ) (x)y1 y2

pW

,
(x) (ξ)y1 y2

pW

a ≤ ξ ≤ x,

x ≤ ξ ≤ b,
(7.2.9)

(x)y1 (x)y2 (a) = 0, (b) = 0y1 y2 (b) ≠ 0, (a) ≠ 0y1 y2

x = a x = b

G(a, ξ) = = 0,
(a) (ξ)y1 y2

pW

G(b, ξ) = = 0.
(ξ) (b)y1 y2

pW
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But a careful look at the original form shows that

We will make use of these properties in the next section to quickly determine the Green’s functions for other boundary value
problems.

Solve the boundary value problem  using the boundary value Green’s function.

Solution
We first solve the homogeneous equation, . After two integrations, we have , for  and  constants to
be determined.

We need one solution satisfying  Thus,

So, we can pick , since  is arbitrary.

The other solution has to satisfy . So,

This can be solved for . Again,  is arbitrary and we will choose . Thus, .

For this problem . Thus, for  and ,

Note that  is a constant, as it should be.

Now we construct the Green’s function. We have

Notice the symmetry between the two branches of the Green’s function. Also, the Green’s function satisfies homogeneous
boundary conditions: , from the lower branch, and , from the upper branch.

Finally, we insert the Green’s function into the integral form of the solution and evaluate the integral.

G(ξ, x) =
⎧

⎩
⎨

,
(x) (ξ)y1 y2

pW

,
(ξ) (x)y1 y2

pW

a ≤ x ≤ ξ,

ξ ≤ x ≤ b,
(7.2.10)

G(x, ξ) = G(ξ, x).

 Example 7.2.1

= , y(0) = 0 = y(1)y′′ x2

= 0y′′ y(x) = Ax+B A B

(0) = 0y1

0 = (0) = B. y1

(x) = xy1 A

(1) = 0y2

0 = (1) = A+B.y2

B = −A A A = −1 (x) = 1 −xy2

p(x) = 1 (x) = xy1 (x) = 1 −xy2

p(x)W (x) = (x) (x) − (x) (x) = x(−1) −1(1 −x) = −1.y1 y′
2 y′

1 y2

p(x)W (x)

G(x, ξ) ={
−ξ(1 −x),
−x(1 −ξ),

0 ≤ ξ ≤ x,
x ≤ ξ ≤ 1.

(7.2.11)

G(0, ξ) = 0 G(1, ξ) = 0
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Checking the answer, we can easily verify that , and .

Properties of Green’s Functions
We have noted some properties of Green’s functions in the last section. In this section we will elaborate on some of these properties
as a tool for quickly constructing Green’s functions for boundary value problems. We list five basic properties:

1. Differential Equation: 

The boundary value Green’s function satisfies the differential equation  This is

easily established. For  we are on the second branch and  is proportional to . Thus, since  is a solution
of the homogeneous equation, then so is . For  we are on the first branch and  is proportional to . So,
once again  is a solution of the homogeneous problem.

2. Boundary Conditions: 
In the example in the last section we had seen that  and . For example, for  we are on the second
branch and  is proportional to . Thus, whatever condition  satisfies,  will satisfy. A similar statement
can be made for .

3. Symmetry or Reciprocity:  
We had shown this reciprocity property in the last section.

4. Continuity of G at :  
Here we define through the limits of a function as  approaches  from above or below. In particular,

Setting  in both branches, we have

Therefore, we have established the continuity of  between the two branches at .
5. Jump Discontinuity of  at :

This case is not as obvious. We first compute the derivatives by noting which branch is involved and then evaluate the
derivatives and subtract them. Thus, we have

y(x) = G(x, ξ)f(ξ)dξ∫
1

0

= G(x, ξ) dξ∫
1

0
ξ2

= − ξ(1 −x) dξ− x(1 −ξ) dξ∫
x

0
ξ2 ∫

1

x

ξ2

= −(1 −x) dξ−x ( − )dξ∫
x

0
ξ3 ∫

1

x

ξ2 ξ3

= −(1 −x) −x[ ]
ξ4

4

x

0

[ − ]
ξ3

3

ξ4

4

1

x

= − (1 −x) − x(4 −3) + x(4 −3 )
1

4
x4 1

12

1

12
x3 x4

= ( −x).
1

12
x4 (7.2.12)

= , y(0) = 0y′′ x2 y(1) = 0

(p(x) )+q(x)G(x, ξ) = 0, x ≠ ξ∂
∂x

∂G(x, )Z
~

∂x

x < ξ G(x, ξ) (x)y1 (x)y1

G(x, ξ) x > ξ G(x, ξ) (x)y2

G(x, ξ)

G(a, ξ) = 0 G(b, ξ) = 0 x = a

G(x, ξ) (x)y1 (x)y1 G(x, ξ)
x = b

G(xξ) = G(ξ, x)

x = ξ G( , ξ) = G( , ξ)ξ+ ξ−

ξ± x ξ

G( , x) = G(x, ξ), x > ξ,ξ+ lim
x↓ξ

G( , x) = G(x, ξ), x < ξ.ξ− lim
x↑ξ

x = ξ

= .
(ξ) (ξ)y1 y2

pW

(ξ) (ξ)y1 y2

pW

G(x, ξ) x = ξ
∂G

∂x
x = ξ

− =
∂G( , ξ)ξ+

∂x

∂G( , ξ)ξ−

∂x

1

p(ξ)
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Here is a summary of the properties of the boundary value Green’s function based upon the previous solution.

1. Differential Equation:

2. Boundary Conditions: Whatever conditions  and  satisfy,  will satisfy.
3. Symmetry or Reciprocity: 
4. Continuity of G at : 
5. Jump Discontinuity of  at :

We now show how a knowledge of these properties allows one to quickly construct a Green’s function with an example.

Construct the Green’s function for the problem

with .

Solution
I. Find solutions to the homogeneous equation.  

A general solution to the homogeneous equation is given as

Thus, for 

II. Boundary Conditions. 
First, we have  for  So,

So,

Second, we have  for . So,

A solution can be chosen with

−
∂G( , ξ)ξ+

∂x

∂G( , ξ)ξ−

∂x
= − (ξ) (ξ) + (ξ) (ξ)

1

pW
y1 y′

2

1

pW
y′

1 y2

= −
(ξ) (ξ) − (ξ) (ξ)y′

1 y2 y1 y′
2

p(ξ) ( (ξ) (ξ) − (ξ) (ξ))y1 y′
2

y′
1

y2

= .
1

p(ξ)
(7.2.13)

 Properties of the Green's Function

(p(x) )+q(x)G(x, ξ) = 0, x ≠ ξ
∂

∂x

∂G(x, ξ)

∂x

(x)y1 (x)y2 G(x, ξ)
G(x, ξ) = G(ξ, x)

x = ξ G( , ξ) = G( , )ξ+ ξ− ξ−

∂G

∂x
x = ξ

− =
∂G( , ξ)ξ+

∂x

∂G( , ξ)ξ−

∂x

1

p(ξ)

 Example 7.2.2

+ y = f(x), 0 < x < 1,y′′ ω2

y(0) = 0 = y(1),

ω ≠ 0

(x) = sinωx+ cosωx.yh c1 c2

x ≠ ξ

G(x, ξ) = (ξ) sinωx+ (ξ) cosωxc1 c2

G(0, ξ) = 0 0 ≤ x ≤ ξ.

G(0, ξ) = (ξ) cosωx = 0c2

G(x, ξ) = (ξ) sinωx, 0 ≤ x ≤ ξc1

G(1, ξ) = 0 ξ ≤ x ≤ 1

G(1, ξ) = (ξ) sinω+ (ξ) cosω. = 0c1 c2
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This gives

This can be simplified by factoring out the  and placing the remaining terms over a common denominator. The result
is

Since the coefficient is arbitrary at this point, as can write the result as

We note that we could have started with  as one of the linearly independent solutions of the
homogeneous problem in anticipation that  satisfies the second boundary condition.

III. Symmetry or Reciprocity 
We now impose that . To this point we have that

We can make the branches symmetric by picking the right forms for  and . We choose 
and . Then,

Now the Green’s function is symmetric and we still have to determine the constant . We note that we could have gotten to
this point using the Method of Variation of Parameters result where .

IV. Continuity of  
We already have continuity by virtue of the symmetry imposed in the last step.

V. Jump Discontinuity in . 
We still need to determine . We can do this using the jump discontinuity in the derivative:

For this problem . Inserting the Green’s function, we have

Therefore,

Finally, we have the Green’s function:

(ξ) = − (ξ) tanωc2 c1

G(x, ξ) = (ξ) sinωx− (ξ) tanωcosωxc1 c1

(ξ)c1

G(x, ξ) = [sinωx cosω−sinωcosωx]
(ξ)c1

cosω

= − sinω(1 −x).
(ξ)c1

cosω
(7.2.14)

G(x, ξ) = (ξ) sinω(1 −x), ξ ≤ x ≤ 1.d1

(x) = sinω(1 −x)y2

(x)y2

G(x, ξ) = G(ξ, x)

G(x, ξ) ={
(ξ) sinωx,c1

(ξ) sinω(1 −x),d1

0 ≤ x ≤ ξ,

ξ ≤ x ≤ 1.

(ξ)c1 (ξ)d1 (ξ) = C sinω(1 −ξ)c1

(ξ) = C sinωξd1

G(x, ξ) ={
C sinω(1 −ξ) sinωx,
C sinω(1 −x) sinωξ,

0 ≤ x ≤ ξ,
ξ ≤ x ≤ 1.

C
C = 1

pW

G(x, ξ)

G(x, ξ)∂

∂x

C

− =
∂G( , ξ)ξ+

∂x

∂G( , ξ)ξ−

∂x

1

p(ξ)

p(x) = 1

1 = −
∂G( , ξ)ξ+

∂x

∂G( , ξ)ξ−

∂x

= [C sinω(1 −x) sinωξ − [C sinω(1 −ξ) sinωx
∂

∂x
]x=ξ

∂

∂x
]x=ξ

= −ωC cosω(1 −ξ) sinωξ−ωC sinω(1 −ξ) cosωξ
~

= −ωC sinω(ξ+1 −ξ)

= −ωC sinω. (7.2.15)

C = −
1

ω sinω
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It is instructive to compare this result to the Variation of Parameters result.

Use the Method of Variation of Parameters to solve

Solution
We have the functions  and  as the solutions of the homogeneous equation satisfying 

 and . We need to compute  :

Inserting this result into the Variation of Parameters result for the Green’s function leads to the same Green’s function as above.

Differential Equation for the Green’s Function
As we progress in the book we will develop a more general theory of Green’s functions for ordinary and partial differential
equations. Much of this theory relies on understanding that the Green’s function really is the system response function to a point
source. This begins with recalling that the boundary value Green’s function satisfies a homogeneous differential equation for 

,

For , we have seen that the derivative has a jump in its value. This is similar to the step, or Heaviside, function,

The function is shown in Figure  and we see that the derivative of the step function is zero everywhere except at the jump, or
discontinuity. At the jump, there is an infinite slope, though technically, we have learned that there is no derivative at this point. We
will try to remedy this situation by introducing the Dirac delta function,

We will show that the Green’s function satisfies the differential equation

However, we will first indicate why this knowledge is useful for the general theory of solving differential equations using Green’s
functions.

G(x, ξ) ={
− ,

sin ω(1−ξ) sin ωx

ω sin ω

− ,sin ω(1−x) sin ωξ

ω sin ω

0 ≤ x ≤ ξ,

ξ ≤ x ≤ 1.
(7.2.16)

 Example 7.2.3

+ y = f(x), 0 < x < 1,y′′ ω2

y(0) = 0 = y(1), ω ≠ 0.

(x) = sinωxy1 (x) = sinω(1 −x)y2

(0) = 0y1 (1) = 0y2 pW

p(x)W (x) = (x) (x) − (x) (x)y1 y′
2 y′

1 y2

= −ω sinωx cosω(1 −x) −ωcosωx sinω(1 −x)

= −ω sinω (7.2.17)

x ≠ ξ

(p(x) )+q(x)G(x, ξ) = 0, x ≠ ξ
∂

∂x

∂G(x, ξ)

∂x
(7.2.18)

x = ξ

H(x) ={ 1,
0,

x > 0,
x < 0.

7.2.1

δ(x) = H(x).
d

dx

(p(x) )+q(x)G(x, ξ) = δ(x−ξ)
∂

∂x

∂G(x, ξ)

∂x
(7.2.19)
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Figure : The Heaviside step function, .

The Dirac delta function is described in more detail in Section 9.4. The key property we will need here is the sifting property,

for  .

As noted, the Green’s function satisfies the differential equation

and satisfies homogeneous conditions. We will use the Green’s function to solve the nonhomogeneous equation

These equations can be written in the more compact forms

Using these equations, we can determine the solution, , in terms of the Green’s function. Multiplying the first equation by 
, the second equation by , and then subtracting, we have

Now, integrate both sides from  to . The left hand side becomes

Using Green’s Identity from Section 4.2.2, the right side is

Combining these results and rearranging, we obtain

7.2.1 H(x)

 Note

f(x)δ(x−ξ)dx = f(ξ)∫
b

a

a < ξ < b

(p(x) )+q(x)G(x, ξ) = δ(x−ξ)
∂

∂x

∂G(x, ξ)

∂x
(7.2.20)

(p(x) )+q(x)y(x) = f(x).
d

dx

dy(x)

dx
(7.2.21)

L[y] = f(x)

L[G] = δ(x−ξ).
(7.2.22)

y(x)
G(x, ξ) y(x)

GL[y] −yL[G] = f(x)G(x, ξ) −δ(x−ξ)y(x).

x = a x = b

[f(x)G(x, ξ) −δ(x−ξ)y(x)]dx = f(x)G(x, ξ)dx−y(ξ).∫
b

a

∫
b

a

(GL[y] −yL[G])dx = .∫
b

a

[p(x)(G(x, ξ) (x) −y(x) (x, ξ))]y′ ∂G

∂x

x=b

x=a

y(ξ) = f(x)G(x, ξ)dx∫
b

a

+ .[p(x)(y(x) (x, ξ) −G(x, ξ) (x))]
∂G

∂x
y′

x=b

x=a

(7.2.23)
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Recall that Green’s identity is given by

The general solution in terms of the boundary value Green’s function with corresponding surface terms.

We will refer to the extra terms in the solution,

as the boundary, or surface, terms. Thus,

The result in Equation  is the key equation in determining the solution of a nonhomogeneous boundary value problem. The
particular set of boundary conditions in the problem will dictate what conditions  has to satisfy. For example, if we have the
boundary conditions  and , then the boundary terms yield

The right hand side will only vanish if  also satisfies these homogeneous boundary conditions. This then leaves us with the
solution

We should rewrite this as a function of . So, we replace  with  and  with . This gives

However, this is not yet in the desirable form. The arguments of the Green’s function are reversed. But, in this case  is
symmetric in its arguments. So, we can simply switch the arguments getting the desired result.

We can now see that the theory works for other boundary conditions. If we had , then the  term in the
boundary terms could be made to vanish if we set . So, this confirms that other boundary value problems can be
posed besides the one elaborated upon in the chapter so far.

We can even adapt this theory to nonhomogeneous boundary conditions. We first rewrite Equation  as

Let’s consider the boundary conditions  and . We also assume that  satisfies homogeneous boundary
conditions,

 Note

(uLv−vLu)dx =∫
b

a

[p (u −v )]v′ u′ b

a

S(b, ) −S(a, ) = ,ξ
~

ξ
~

[p(x)(y(x) (x, ) −G(x, ξ) (x))]
∂G

∂x
ξ
~

y′
x=b

x=a

y( ) = f(x)G(x, ξ)dx−[S(b, ) −S(a, ξ)].ζ
~

∫
b

a

ζ
~

(7.2.23)
G(x, ξ)

y(a) = 0 y(b) = 0

y(ξ) =

=

f(x)G(x, )dx−[p(b)(y(b) (b, ξ) −G(b, ξ) (b))]∫
b

a

~ ∂G

∂x
y′

+[p(a)(y(a) (a, ξ) −G(a, ξ) (a))]
∂G

∂x
y′

f(x)G(x, ξ)dx+p(b)G(b, ξ) (b) −p(a)G(a, ξ) (a).∫
b

a

y′ y′ (7.2.24)

G(x, ξ)

y(ξ) = f(x)G(x, ξ)dx∫
b

a

x ξ x x ξ

y(x) = f(ξ)G(ξ, x)dξ. ∫
b

a

G(x, ξ)

(a) = 0y′ y(a) (a, ξ)∂G
dx

(a, ξ) = 0∂G
∂x

(7.2.23)

y(x) = G(x, ξ)f(ξ)dξ− .∫
b

a

[p(ξ)(y(ξ) (x, ξ) −G(x, ξ) (ξ))]
∂G

∂ξ
y′

=bζ
~

a=~
(7.2.25)

y(a) = α (b) = βy′ G(x, ξ)

G(a, ξ) = 0, (b, ξ) = 0.
∂G

∂ξ
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in both  and  since the Green’s function is symmetric in its variables. Then, we need only focus on the boundary terms to
examine the effect on the solution. We have

Therefore, we have the solution

This solution satisfies the nonhomogeneous boundary conditions.

General solution satisfying the nonhomogeneous boundary conditions   and . Here the Green’s function
satisfies homogeneous boundary conditions, .

Solve  using the boundary value Green’s function.

Solution
This is a modification of Example . We can use the boundary value Green’s function that we found in that problem,

We insert the Green’s function into the general solution  and use the given boundary conditions to obtain

Of course, this problem can be solved by direct integration. The general solution is

Inserting this solution into each boundary condition yields the same result.

The Green’s function satisfies a delta function forced differential equation.

We have seen how the introduction of the Dirac delta function in the differential equation satisfied by the Green’s function,
Equation , can lead to the solution of boundary value problems. The Dirac delta function also aids in the interpretation of

x ξ

S(b, x) −S(a, x) =

=

[p(b)(y(b) (x, b) −G(x, b) (b))]
∂G

∂ξ
y′

−[p(a)(y(a) (x, a) −G(x, a) (a))]
∂G

∂ξ
y′

−βp(b)G(x, b) −αp(a) (x, a).
∂G

∂ξ
(7.2.26)

y(x) = G(x, ξ)f(ξ)dξ+βp(b)G(x, b) +αp(a) (x, a).∫
b

a

∂G

∂ξ
(7.2.27)

 Note

y(a) = α (b) = βy′

G(a, ξ) = 0, (b, ξ) = 0∂G
∂ξ

 Example 7.2.4

= , y(0) = 1, y(1) = 2y′′ x2

7.2.1

G(x, ξ) ={ − (1 −x),ξ
~

−x(1 −ξ),
0 ≤ ξ ≤ x,
x ≤ ξ ≤ 1

(7.2.28)

(7.2.27)

y(x) = G(x, ξ) dξ−∫
1

0
ξ
~2

[y(ξ) (x, ξ) −G(x, ξ) (ξ)]
∂G

∂ξ
y′

=1ζ
~

0=~

= (x−1) d + x(ξ−1) d +y(0) (x, 0) −y(1) (x, 1)∫
x

0
ξ3 ξ

~
∫

1

x

ξ2 ξ
~ ∂G

∂ξ

∂G

∂ξ

= + − +(x−1) −2x
(x−1)x4

4

x (1 − )x4

4

x (1 − )x3

3

= + x−1.
x4

12

35

12
(7.2.29)

y(x) = + x+ .
x4

12
c1 c2

 Note

(7.2.20)
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the Green’s function. We note that the Green’s function is a solution of an equation in which the nonhomogeneous function is 
. Note that if we multiply the delta function by  and integrate, we obtain

We can view the delta function as a unit impulse at  which can be used to build  as a sum of impulses of different
strengths, . Thus, the Green’s function is the response to the impulse as governed by the differential equation and given
boundary conditions.

Derivation of the jump condition for the Green’s function.

In particular, the delta function forced equation can be used to derive the jump condition. We begin with the equation in the form

Now, integrate both sides from  to  and take the limit as . Then,

Since the  term is continuous, the limit as  of that term vanishes. Using the Fundamental Theorem of Calculus, we then
have

This is the jump condition that we have been using!

Series Representations of Green’s Functions
There are times that it might not be so simple to find the Green’s function in the simple closed form that we have seen so far.
However, there is a method for determining the Green’s functions of Sturm-Liouville boundary value problems in the form of an
eigenfunction expansion. We will finish our discussion of Green’s functions for ordinary differential equations by showing how one
obtains such series representations. (Note that we are really just repeating the steps towards developing eigenfunction expansion
which we had seen in Section 4.3.)

We will make use of the complete set of eigenfunctions of the differential operator, , satisfying the homogeneous boundary
conditions:

We want to find the particular solution  satisfying  and homogeneous boundary conditions. We assume that

Inserting this into the differential equation, we obtain

This has resulted in the generalized Fourier expansion

δ(x−ξ) f(ξ)

δ(x−ξ)f(ξ)dξ = f(x)∫
∞

−∞

x = ξ f(x)
f(ξ)

 Note

(p(x) )+q(x)G(x, ξ) = δ(x−ξ).
∂

∂x

∂G(x, ξ)

∂x
(7.2.30)

ξ− ϵ ξ+ ϵ ϵ → 0

[ (p(x) )+q(x)G(x, ξ)]dxlim
ϵ→0

∫
ξ+ϵ

ξ−ϵ

∂

∂x

∂G(x, ξ)

∂x
= δ(x−ξ)dxlim

ϵ→0
∫

ξ+ϵ

ξ−ϵ

= 1. (7.2.31)

q(x) ϵ → 0

= 1.lim
ϵ→0

[p(x) ]
∂G(x, ξ)

∂x

+ϵξ
~

−ϵζ
~

(7.2.32)

L

L [ ] = − σ , n = 1, 2, …ϕn λn ϕn

y L[y] = f

y(x) = (x).∑
n=1

∞

anϕn

L[y] = L [ ] = − σ = f .∑
n=1

∞

an ϕn ∑
n=1

∞

λnan ϕn

f(x) = σ (x)∑
n=1

∞

cn ϕn
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with coefficients

We have seen how to compute these coefficients earlier in section 4.3. We multiply both sides by  and integrate. Using the
orthogonality of the eigenfunctions,

one obtains the expansion coefficients (if  )

where .

As before, we can rearrange the solution to obtain the Green’s function. Namely, we have

Therefore, we have found the Green’s function as an expansion in the eigenfunctions:

We will conclude this discussion with an example. We will solve this problem three different ways in order to summarize the
methods we have used in the text.

Solve

using the Green’s function eigenfunction expansion.

Solution
The Green’s function for this problem can be constructed fairly quickly for this problem once the eigenvale problem is solved.
The eigenvalue problem is

where  and . The general solution is obtained by rewriting the equation as

where

Solutions satisfying the boundary condition at  are of the form

Forcing  gives

So, the eigenvalues are

= − .cn λnan

(x)ϕk

(x) (x)σ(x)dx = ,∫
b

a

ϕn ϕk Nkδnk

≠ 0λk

= −ak
(f , )ϕk

Nkλk

(f , ) ≡ f(x) (x)dxϕk ∫ b

a ϕk

y(x) = (x) = f(ξ)dξ∑
n=1

∞ (f , )ϕn

−Nnλn
ϕn ∫

b

a

∑
n=1

∞ (x) (ξ)ϕn ϕn

−Nnλn
  

G(x,ζ)

G(x, ξ) =∑
n=1

∞ (x) (ξ)ϕn ϕn

−λnNn

(7.2.33)

 Example 7.2.5

+4y = , x ∈ (0, 1), y(0) = y(1) = 0y′′ x2

(x) +4ϕ(x) = −λϕ(x),ϕ′′

ϕ(0) = 0 ϕ(1) = 0

(x) + ϕ(x) = 0,ϕ′′ k2

= 4 +λ.k2

x = 0

ϕ(x) = A sinkx.

ϕ(1) = 0

0 = A sink ⇒ k = nπ, k = 1, 2, 3 … .
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and the eigenfunctions are

We also need the normalization constant, . We have that

We can now construct the Green’s function for this problem using Equation .

Using this Green’s function, the solution of the boundary value problem becomes

We can compare this solution to the one we would obtain if we did not employ Green’s functions directly. The eigenfunction
expansion method for solving boundary value problems, which we saw earlier is demonstrated in the next example.

Solve

using the eigenfunction expansion method.

Solution
We assume that the solution of this problem is in the form

Inserting this solution into the differential equation , gives

This is a Fourier sine series expansion of  on . Namely,

= −4, n = 1, 2, …λn n2π2

= sinnπx, n = 1, 2, …ϕn

Nn

= = nπx = .Nn ∥ ∥ϕn
2 ∫

1

0
sin2 1

2

(7.2.33)

G(x, ξ) = 2∑
n=1

∞ sinnπx sinnπξ

(4 − )n2π2
(7.2.34)

y(x) = G(x, ξ)f(ξ)dξ∫
1

0

= (2 ) dξ∫
1

0
∑
n=1

∞ sinnπx sinnπξ
~

(4 − )n2π2
ξ
~2

= 2 sinnπξdξ∑
n=1

∞ sinnπx

(4 − )n2π2
∫

1

0
ξ2

= 2 [ ]∑
n=1

∞ sinnπx

(4 − )n2π2

(2 − ) (−1 −2n2π2 )n

n3π3
(7.2.35)

 Example 7.2.6

+4y = , x ∈ (0, 1), y(0) = y(1) = 0y′′ x2

y(x) = (x).∑
n=1

∞

cnϕn

L[y] = x2

x2 = L[ sinnπx]∑
n=1

∞

cn

= [ sinnπx+4 sinnπx]∑
n=1

∞

cn
d2

dx2

= [4 − ] sinnπx∑
n=1

∞

cn n2π2 (7.2.36)

f(x) = x2 [0, 1]
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In order to determine the  ’s in Equation , we will need the Fourier sine series expansion of  on . Thus, we
need to compute

The resulting Fourier sine series is

Inserting this expansion in Equation , we find

Due to the linear independence of the eigenfunctions, we can solve for the unknown coefficients to obtain

Therefore, the solution using the eigenfunction expansion method is

We note that the solution in this example is the same solution as we had obtained using the Green’s function obtained in series form
in the previous example.

One remaining question is the following: Is there a closed form for the Green’s function and the solution to this problem? The
answer is yes!

Find the closed form Green’s function for the problem

and use it to obtain a closed form solution to this boundary value problem.

Solution
We note that the differential operator is a special case of the example done in section 7.2. Namely, we pick . The Green’s
function was already found in that section. For this special case, we have

Using this Green’s function, the solution to the boundary value problem is readily computed

f(x) = sinnπx.∑
n=1

∞

bn

cn (7.2.36) x2 [0, 1]

bn = sinnπx
2

1
∫

1

0
x2

= 2 [ ] , n = 1, 2, …
(2 − ) (−1 −2n2π2 )n

n3π3
(7.2.37)

= 2 [ ] sinnπx.x2 ∑
n=1

∞ (2 − ) (−1 −2n2π2 )n

n3π3

(7.2.36)

2 [ ] sinnπx = [4 − ] sinnπx.∑
n=1

∞ (2 − ) (−1 −2n2π2 )n

n3π3
∑
n=1

∞

cn n2π2

= 2 .cn
(2 − ) (−1 −2n2π2 )n

(4 − )n2π2 n3π3

y(x) = (x)∑
n=1

∞

cnϕn

= 2 [ ] .∑
n=1

∞ sinnπx

(4 − )n2π2

(2 − ) (−1 −2n2π2 )n

n3π3
(7.2.38)

 Example 7.2.7

+4y = , x ∈ (0, 1), y(0) = y(1) = 0y′′ x2

ω = 2

G(x, ξ) =
⎧

⎩
⎨

− ,
sin 2(1−ξ) sin 2x

2 sin 2 sin 2ξ

− ,sin 2(1−x) sin 2

2 sin 2

0 ≤ x ≤ ξ,

ξ ≤ x ≤ 1.
(7.2.39)
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In Figure  we show a plot of this solution along with the first five terms of the series solution. The series solution converges
quickly to the closed form solution.

Figure : Plots of the exact solution to Example  with the first five terms of the series solution.

As one last check, we solve the boundary value problem directly, as we had done in the last chapter.

Solve directly:

Solution
The problem has the general solution

y(x) = G(x, ξ)f(ξ)dξ∫
1

0

= − dξ+ dξ∫
x

0

sin2(1 −x) sin2ξ

2 sin2
ξ2 ∫

1

x

sin2(ξ−1) sin2x

2 sin2
ξ2

= − [− sin2 +(1 − x) sin2 +sinx cosx(1 +cos 2)] .
1

4 sin2
x2 cos2

= − [− sin2 +2 x sin1 cos 1 +2 sinx cosx 1)] .
1

4 sin2
x2 sin2 cos2

= − [− sin2 +2 sinx cos 1(sinx sin1 +cosx cos 1)] .
1

8 sin1 cos 1
x2

= − .
x2

4

sinx cos(1 −x)

4 sin1
(7.2.40)

7.2.2

7.2.2 7.6

 Example 7.2.8

+4y = , x ∈ (0, 1), y(0) = y(1) = 0.y′′ x2

y(x) = cos 2x+ sin2x+ (x)c1 c2 yp
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where  is a particular solution of the nonhomogeneous differential equation. Using the Method of Undetermined
Coefficients, we assume a solution of the form

Inserting this guess into the nonhomogeneous equation, we have

Thus,  and . The solution of this system is

So, the general solution of the nonhomogeneous differential equation is

We next determine the arbitrary constants using the boundary conditions. We have

Thus,  and

Inserting these constants into the solution we find the same solution as before.

Generalized Green’s Function
When solving  using eigenfunction expansions, there can be a problem when there are zero eigenvalues. Recall from
Section 4.3 the solution of this problem is given by

Here the eigenfunctions, , satisfy the eigenvalue problem

yp

(x) = A +Bx+C.yp x2

2A+4 (A +Bx+C) = ,x2 x2

B = 0, 4A = 1 2A+4C = 0

A = , B = 0, C = − .
1

4

1

8

y(x) = cos 2x+ sin2x+ − .c1 c2
x2

4

1

8

0

0

= y(0)

= −c1
1

8
= y(1)

= cos 2 + sin2 +c1 c2
1

8
(7.2.41)

=c1
1
8

= − .c2

+ cos 21
8

1
8

sin2

y(x) = cos 2x−[ ] sin2x+ −
1

8

+ cos 21
8

1
8

sin2

x2

4

1

8

= +
(cos 2x−1) sin2 −sin2x(1 +cos 2)

8 sin2

x2

4

= +
(−2 x)2 sin1 cos 1 −sin2x (2 1)sin2 cos2

16 sin1 cos 1

x2

4

= − +
( x) sin1 +sinx cosx(cos 1)sin2

4 sin1

x2

4

= − .
x2

4

sinx cos(1 −x)

4 sin1
(7.2.42)

Lu = f

y(x)

cn

= (x),∑
n=1

∞

cnϕn

= − .
f(x) (x)dx∫ b

a
ϕn

(x)σ(x)dxλm ∫ b

a ϕ2
n

(7.2.43)

(x)ϕn

L (x) = − σ(x) (x), x ∈ [a, b]ϕn λn ϕn
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subject to given homogeneous boundary conditions.

Note that if  for some value of , then  is undefined. However, if we require

then there is no problem. This is a form of the Fredholm Alternative. Namely, if  for some , then there is no solution unless
; i.e.,  is orthogonal to . In this case,  will be arbitrary and there are an infinite number of solutions.

.

Solution
The eigenfunctions satisfy . There are the usual solutions,

However, when  So, . The boundary conditions are satisfied if . So, we can take 
. Therefore, there exists an eigenfunction corresponding to a zero eigenvalue. Thus, in order to have a solution, we

have to require

.

Solution
In this problem we check to see if there is an eigenfunctions with a zero eigenvalue. The eigenvalue problem is

A solution satisfying this problem is easily founds as

Therefore, there is a zero eigenvalue. For a solution to exist, we need to require

Thus, either  or there are no solutions.

Recall the series representation of the Green’s function for a Sturm-Liouville problem in Equation ,

We see that if there is a zero eigenvalue, then we also can run into trouble as one of the terms in the series is undefined.

= 0λm n = m cm

(f , ) = f(x) (x)dx = 0,ϕm ∫
b

a

ϕn

= 0λn n

f , ) = 0ϕm f ϕn an

 Example 7.2.9

= f(x), (0) = 0, (L) = 0u′′ u′ u′

(x) = − (x), (0) = 0, (L) = 0ϕ′′
n λnϕn ϕ′

n ϕ′
n

(x) = cos , = , n = 1, 2, … .ϕn

nπx

L
λn ( )

nπ

L

2

= 0, (x) = 0.λn ϕ′′
0 (x) = Ax+Bϕ0 A = 0

(x) = 1ϕ0

f(x)dx = 0.∫
L

0

 Example 7.2.10

+ u = β+2x, u(0) = 0, u(1) = 0u′′ π2

+ ϕ = 0, ϕ(0) = 0, ϕ(1) = 0.ϕ′′ π2

ϕ(x) = sinπx.

0 = (β+2x) sinπxdx∫
1

0

= − +2cosπx
β

π

∣
∣
∣
1

0
[ x cosπx− sinπx]

1

π

1

π2

1

0

= − (β+1).
2

π
(7.2.44)

β = −1

(7.2.33)

G(x, ζ) =∑
n=1

∞ (x) (ξ)ϕn ϕn

−λnNn

(7.2.45)
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Recall that the Green’s function satisfies the differential equation   and satisfies some appropriate
set of boundary conditions. Using the above analysis, if there is a zero eigenvalue, then  0 . In order for a solution to
exist to the Green’s function differential equation, then  and we have to require

for and . Therefore, the Green’s function does not exist.

We can fix this problem by introducing a modified Green’s function. Let’s consider a modified differential equation,

for some constant . Now, the orthogonality condition becomes

Thus, we can choose

Using the modified Green’s function, we can obtain solutions to . We begin with Green’s identity from Section 4.2.2, given
by

Letting , we have

Applying homogeneous boundary conditions, the right hand side vanishes. Then we have

Noting that  the last integral gives

Therefore, the solution can be written as

Here we see that there are an infinite number of solutions when solutions exist.

LG(x, ξ) = δ(x−ξ), x, ξ ∈ [a, b]
L (x) =ϕh

f(x) = δ(x−ξ)

0 = (f , ) = (x)δ(x−ξ)dx = (ξ),ϕh ∫
b

a

ϕh ϕh

ξ ∈ [a, b]

L (x, ξ) = δ(x−ξ) +c (x)GM ϕh

c

0 = (f , )ϕh = (x) [δ(x−ξ) +c (x)] dx∫
b

a

ϕh ϕh

= (ξ) +c (x)dx.ϕh ∫
b

a

ϕ2
h

(7.2.46)

c = −
(ξ)ϕh

(x)dx∫ b

a
ϕ2
h

Lu = f

(uLv−vLu)dx = .∫
b

a

[p (u −v )]v′ u′ b

a

v= GM

( L[u] −uL [ ])dx = .∫
b

a

GM GM [p(x)( (x, ξ) (x) −u(x) (x, ξ))]GM u′ ∂GM

∂x

x=b

x=a

0

u(ξ)

= ( (x, ξ)L[u(x)] −u(x)L [ (x, ξ)])dx∫
b

a

GM GM

= ( (x, ξ)f(x) −u(x) [δ(x−ξ) +c (x)])dx∫
b

a

GM ϕh

= (x, ξ)f(x)dx−c u(x) (x)dx.∫
b

a

GM ∫
b

a

ϕh (7.2.47)

u(x, t) = (x) + (xc1ϕh up ), 

−c u(x) (x)dx = (x)dx = (ξ).∫
b

a

ϕh

(ξ)ϕh

(x)dx∫ b

a ϕ2
h

∫
b

a

ϕ2
h

c1ϕh

u(x) = f(ξ) (x, ξ)d + (x).∫
b

a

GM ξ
~

c1ϕh
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Use the modified Green’s function to solve , .

Solution
We have already seen that a solution exists for this problem, where we have set  in Example .

We construct the modified Green’s function from the solutions of

The general solutions of this equation are

Applying the boundary conditions, we have  and . Thus, the eigenfunctions and eigenvalues are

Note that .

The modified Green’s function satisfies

where

We need to solve for . The modified Green’s function satisfies

and the boundary conditions  and . We assume an eigenfunction expansion,

Then,

The coefficients are found as

Therefore,  and , for .

We have found the modified Green’s function as

 Example 7.2.11

+ u = 2x−1u′′ π2 u(0) = 0, u(1) = 0

β = −1 7.2.10

+ = − , ϕ(0) = 0, ϕ(1) = 0.ϕ′′
n π2ϕn λnϕn

(x) = cos x+ sin x.ϕn c1 +π2 λn
− −−−−−

√ c2 +π2 λn
− −−−−−

√

= 0c1 = nπ+π2 λn
− −−−−−

√

(x) = sinnπx, = ( −1) , n = 1, 2, 3, … .ϕn λn n2 π2

= 0λ1

(x, ξ) + (x, ξ) = δ(x−ξ) +c (x),
d2

dx2
GM π2GM ϕh

c = −
(ξ)ϕ1

(x)dx∫
1

0 ϕ2
1

= −
sinπξ

πξ, dx∫ 1
0 sin2

= −2 sinπξ. (7.2.48)

(x, ξ)GM

(x, ξ) + (x, ξ) = δ(x−ξ) −2 sinπξ sinπx,
d2

dx2
GM π2GM

(0, ξ) = 0GM (1, ξ) = 0GM

(x, ξ) = (ξ) sinnπx.GM ∑
n=1

∞

cn

δ(x−ξ) −2 sinπξ πxsin
~

= (x, ) + (x, )
d2

dx2
GM

~ π2GM
~

= − (ξ) sinnπx∑
n=1

∞

λncn (7.2.49)

−λncn = 2 [δ(x−ξ) −2 sinπξ sinπx] sinnπxdx∫
1

0

= 2 sinnπξ−2 sinπξ .δn1 (7.2.50)

= 0c1 = 2 sinnπcn ξ
~

n > 1
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We can use this to find the solution. Namely, we have (for  )

We can also solve this problem exactly. The general solution is given by

Imposing the boundary conditions, we obtain

Notice that there are an infinite number of solutions. Choosing , we have the particular solution

In Figure  we plot this solution and that obtained using the modified Green’s function. The result is that they are in
complete agreement.

(x, ξ) = −2 .GM ∑
n=2

∞ sinnπx sinnπξ
~

λn

= 0c1

u(x) = (2ξ−1) (x, ξ)dξ∫
1

0
GM

= −2 (2ξ−1) sinnπξdx∑
n=2

∞ sinnπx

λn
∫

1

0

= −2∑
n=2

∞ sinnπx

( −1)n2 π2
[− (2ξ−1) cosnπξ+ sinnπξ]

1

nπ

1

n2π2

1

0

= 2 sinnπx.∑
n=2

∞ 1 +cosnπ

n ( −1)n2 π3
(7.2.51)

u(x) = sinπx+ cosπx+ .c1 c2
2x−1

π2

u(x) = sinπx+ cosπx+ .c1
1

π2

2x−1

π2

= 0c1

u(x) = cosπx+ .
1

π2

2x−1

π2

7.2.3
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Figure : The solution for Example .
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7.3: The Nonhomogeneous Heat Equation
Boundary value green’s functions do not only arise in the solution of nonhomogeneous ordinary differential equations. They are
also important in arriving at the solution of nonhomogeneous partial differential equations. In this section we will show that this is
the case by turning to the nonhomogeneous heat equation.

Nonhomogeneous Time Independent Boundary Conditions
Consider the nonhomogeneous heat equation with nonhomogeneous boundary conditions:

We are interested in finding a particular solution to this initial-boundary value problem. In fact, we can represent the solution to the
general nonhomogeneous heat equation as the sum of two solutions that solve different problems.

First, we let  satisfy the homogeneous problem

which has homogeneous boundary conditions.

The steady state solution, , satisfies a nonhomogeneous differential equation with nonhomogeneous boundary conditions.
The transient solution, , satisfies the homogeneous heat equation with homogeneous boundary conditions and satisfies a
modified initial condition.

We will also need a steady state solution to the original problem. A steady state solution is one that satisfies . Let  be
the steady state solution. It satisfies the problem

Now consider , the sum of the steady state solution, , and the transient solution, . We first note
that  satisfies the nonhomogeneous heat equation,

The boundary conditions are also satisfied. Evaluating,  at  and , we have

The transient solution satisfies

Finally, the initial condition gives

Thus, if we set , then  will be the solution of the nonhomogeneous boundary value
problem. We all ready know how to solve the homogeneous problem to obtain . So, we only need to find the steady state

−kut uxx

u(0, t)

u(x, 0)

= h(x), 0 ≤ x ≤ L, t > 0,

= a, u(L, t) = b,

= f(x). (7.3.1)

v(x, t)

−kvt vxx
v(0, t)

v(x, 0)

= 0, 0 ≤ x ≤ L, t > 0,

= 0, v(L, t) = 0,

= g(x), (7.3.2)

 Note

w(t)

v(t)

= 0ut w(x)

−kwxx

w(0, t)

= h(x), 0 ≤ x ≤ L.

= a, w(L, t) = b. (7.3.3)

u(x, t) = w(x) +v(x, t) w(x) v(x, t)

u(x, t)

−kut uxx = (w+v −(w+v)t )xx
= −k −k ≡ h(x).vt vxx wxx (7.3.4)

u(x, t) x = 0 x = L

u(0, t) = w(0) +v(0, t) = a

u(L, t) = w(L) +v(L, t) = b (7.3.5)

 Note

v(x, 0) = f(x) −w(x).

u(x, 0) = w(x) +v(x, 0) = w(x) +g(x).

g(x) = f(x) −w(x) u(x, t) = w(x) +v(x, t)

v(x, t)

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90270?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/07%3A_Green's_Functions/7.03%3A_The_Nonhomogeneous_Heat_Equation


7.3.2 https://math.libretexts.org/@go/page/90270

solution, .

There are several methods we could use to solve Equation  for the steady state solution. One is the Method of Variation of
Parameters, which is closely related to the Green’s function method for boundary value problems which we described in the last
several sections. However, we will just integrate the differential equation for the steady state solution directly to find the solution.
From this solution we will be able to read off the Green’s function.

Integrating the steady state equation  once, yields

where we have been careful to include the integration constant, . Integrating again, we obtain

where a second integration constant has been introduced. This gives the general solution for Equation .

The boundary conditions can now be used to determine the constants. It is clear that  for the condition at  to be
satisfied. The second condition gives

Solving for , we have

Inserting the integration constants, the solution of the boundary value problem for the steady state solution is then

This is sufficient for an answer, but it can be written in a more compact form. In fact, we will show that the solution can be written
in a way that a Green’s function can be identified.

First, we rewrite the double integrals as single integrals. We can do this using integration by parts. Consider integral in the first
term of the solution,

Setting  and  in the standard integration by parts formula, we obtain

Thus, the double integral has now collapsed to a single integral. Replacing the integral in the solution, the steady state solution
becomes

We can make a further simplification by combining these integrals. This can be done if the integration range, , in the second
integral is split into two pieces,  and . Writing the second integral as two integrals over these subintervals, we obtain

w(x)

(7.3.3)

(7.3.3)

= − h(z)dz+A, 
dw

dx

1

k
∫

x

0

A = (0)w′

w(x) = − ( h(z)dz) dy+Ax+B,
1

k
∫

x

0

∫
y

0

(7.3.3)

B = a x = 0

b = w(L) = − ( h(z)dz) dy+AL+a.
1

k
∫

L

0

∫
y

0

A

A = ( h(z)dz) dy+ .
1

kL
∫

L

0

∫
y

0

b−a

L

w(x) = − ( h(z)dz) dy+ ( h(z)dz) dy+ x+a.
1

k
∫

x

0

∫
y

0

x

kL
∫

L

0

∫
y

0

b−a

L

I = ( h(z)dz) dy.∫
x

0

∫
y

0

u = h(z)dz∫ y

0
dv= dy

I = ( h(z)dz) dy∫
x

0

∫
y

0

= − yh(y)dyy h(z)dz∫
y

0

∣

∣
∣
x

0

∫
x

0

= (x−y)h(y)dy.∫
x

0

(7.3.6)

w(x) = − (x−y)h(y)dy+ (L−y)h(y)dy+ x+a.
1

k
∫

x

0

x

kL
∫

L

0

b−a

L

[0,L]

[0, x] [x,L]
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Next, we rewrite the integrands,

It can now be seen how we can combine the first two integrals:

The resulting integrals now take on a similar form and this solution can be written compactly as

where

is the Green’s function for this problem.

The full solution to the original problem can be found by adding to this steady state solution a solution of the homogeneous
problem,

Solve the nonhomogeneous problem,

Solution
In this problem we have a rod initially at a temperature of . The ends of the rod are maintained at fixed
temperatures and the bar is continually heated at a constant temperature, represented by the source term, 10 .

First, we find the steady state temperature, , satisfying

Using the general solution, we have

where

w(x) = − (x−y)h(y)dy+ (L−y)h(y)dy
1

k
∫

x

0

x

kL
∫

x

0

+ (L−y)h(y)dy+ x+a.
x

kL
∫

L

x

b−a

L
(7.3.7)

w(x) = − h(y)dy+ h(y)dy
1

k
∫

x

0

L(x−y)

L

1

k
∫

x

0

x(L−y)

L

+ h(y)dy+ x+a.
1

k
∫

L

x

x(L−y)

L

b−a

L
(7.3.8)

w(x) = − h(y)dy+ h(y)dy+ x+a.
1

k
∫

x

0

y(L−x)

L

1

k
∫

L

x

x(L−y)

L

b−a

L

w(x) = − G(x, y)[− h(y)]dy+ x+a,∫
L

0

1

k

b−a

L

G(x, y) ={
,

x(L−y)

L

,
y(L−x)

L

0 ≤ x ≤ y,

y ≤ x ≤ L,

−kut uxx
u(0, t)

u(x, 0)

= 0, 0 ≤ x ≤ L, t > 0,

= 0, u(L, t) = 0,

= f(x) −w(x). (7.3.9)

 Example 7.3.1

−ut uxx
u(0, t)

u(x, 0)

= 10, 0 ≤ x ≤ 1, t > 0,

= 20, u(1, t) = 0,

= 2x(1 −x). (7.3.10)

u(x, 0) = 2x(1 −x)

w(x)

−wxx

w(0, t)

= 10, 0 ≤ x ≤ 1.

= 20, w(1, t) = 0. (7.3.11)

w(x) = 10G(x, y)dy−20x+20,∫
1

0
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we compute the solution

Checking this solution, it satisfies both the steady state equation and boundary conditions.

The transient solution satisfies

Recall, that we have determined the solution of this problem as

where the Fourier sine coefficients are given in terms of the initial temperature distribution,

Therefore, the full solution is

Note that for large , the transient solution tends to zero and we are left with the steady state solution as expected.

Time Dependent Boundary Conditions

In the last section we solved problems with time independent boundary conditions using equilibrium solutions satisfying the steady
state heat equation sand nonhomogeneous boundary conditions. When the boundary conditions are time dependent, we can also
convert the problem to an auxiliary problem with homogeneous boundary conditions.

Consider the problem

We define , where  is a modified form of the steady state solution from the last section,

Noting that

we find that  is a solution of the problem

G(x, y) ={
x(1 −y),

y(1 −x),

0 ≤ x ≤ y,

y ≤ x ≤ 1,

w(x) = 10y(1 −x)dy+ 10x(1 −y)dy−20x+20∫
x

0

∫
1

x

= 5 (x− )−20x+20,x2

= 20 −15x−5 .x2 (7.3.12)

−vt vxx
v(0, t)

v(x, 0)

= 0, 0 ≤ x ≤ 1, t > 0,

= 0, v(1, t) = 0,

= x(1 −x) −10. (7.3.13)

v(x, t) = sinnπx,∑
n=1

∞

bne
− tn2π2

= 2 [x(1 −x) −10] sinnπxdx, n = 1, 2, … .bn ∫
1

0

u(x, t) = sinnπx+20 −15x−5 .∑
n=1

∞

bne
− tn2π2

x2

t

−kut uxx

u(0, t)

u(x, 0)

= h(x),

= a(t),

= f(x),

0 ≤ x ≤ L,

u(L, t) = b(t),

0 ≤ x ≤ L.

t > 0,

t > 0,

(7.3.14)

u(x, t) = v(x, t) +w(x, t) w(x, t)

w(x, t) = a(t) + x.
b(t) −a(t)

L

ut

uxx

= + + x,vt ȧ
−ḃ ȧ

L
= ,vxx (7.3.15)

v(x, t)
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Thus, we have converted the original problem into a nonhomogeneous heat equation with homogeneous boundary conditions and a
new source term and new initial condition.

Solve the problem

Solution
We first define

Then,  satisfies the problem

This problem is easily solved. The general solution is given by

We can see that the Fourier coefficients all vanish except for . This gives   and, therefore, we have
found the solution

This page titled 7.3: The Nonhomogeneous Heat Equation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

−kvt vxx

v(0, t)

v(x, 0)

= h(x) −[ (t) + x] ,ȧ
(t) − (t)ḃ ȧ

L

= 0, v(L, t) = 0, t > 0,

= f(x) −[a(0) + x] ,
b(0) −a(0)

L

0 ≤ x ≤ L, t > 0,

0 ≤ x ≤ L. (7.3.16)

 Example 7.3.2

−ut uxx
u(0, t)

u(x, 0)

= x, 0 ≤ x ≤ 1, t > 0,

= 2, u(L, t) = t, t > 0

= 3 sin2πx+2(1 −x), 0 ≤ x ≤ 1. (7.3.17)

u(x, t) = v(x, t) +2 +(t−2)x.

v(x, t)

−vt vxx
v(0, t)

v(x, 0)

= 0, 0 ≤ x ≤ 1, t > 0,

= 0, v(L, t) = 0, t > 0,

= 3 sin2πx, 0 ≤ x ≤ 1. (7.3.18)

v(x, t) = sinnπx .∑
n=1

∞

bn e− tn2π2

b2 v(x, t) = 3 sin2πxe−4 tπ2

u(x, t) = 3 sin2πx +2 +(t−2)x.e−4 tπ2
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7.4: Green’s Functions for 1D Partial Differential Equations
In Section 7.1 we encountered the initial value green’s function for initial value problems for ordinary differential equations. In that
case we were able to express the solution of the differential equation   in the form

where the Green’s function  was used to handle the nonhomogeneous term in the differential equation. In a similar spirit, we
can introduce Green’s functions of different types to handle nonhomogeneous terms, nonhomogeneous boundary conditions, or
nonhomogeneous initial conditions. Occasionally, we will stop and rearrange the solutions of different problems and recast the
solution and identify the Green’s function for the problem.

In this section we will rewrite the solutions of the heat equation and wave equation on a finite interval to obtain an initial value
Green;s function. Assuming homogeneous boundary conditions and a homogeneous differential operator, we can write the solution
of the heat equation in the form

where , and the solution of the wave equation as

where  and . The functions , , and  are initial value
Green’s functions and we will need to explore some more methods before we can discuss the properties of these functions. [For
example, see Section.]

We will now turn to showing that for the solutions of the one dimensional heat and wave equations with fixed, homogeneous
boundary conditions, we can construct the particular Green’s functions.

Heat Equation

In Section 3.5 we obtained the solution to the one dimensional heat equation on a finite interval satisfying homogeneous Dirichlet
conditions,

The solution we found was the Fourier sine series

where

and the Fourier sine coefficients are given in terms of the initial temperature distribution,

Inserting the coefficients  into the solution, we have

L[y] = f

y(t) = ∫ G(t, τ)f(τ)dτ ,

G(t, τ)

u(x, t) = G(x, ξ; t, )f(ξ)dξ.∫
L

0
t0

u (x, ) = f(x)t0

u(x, t) = (x, ξ, t, )f(ξ)dξ+ (x, ξ, t, )g(ξ)dξ.∫
L

0

Gc t0 ∫
L

0

Gs t0

u (x, ) = f(x)t0 (x, ) = g(x)ut t0 G(x, ξ; t, )t0 G(x, ξ; t, )t0 G(x, ξ; t, )t0

= k , 0 < t, 0 ≤ x ≤ L,ut uxx
u(x, 0) = f(x), 0 < x < L,

u(0, t) = 0, t > 0,

u(L, t) = 0, t > 0. (7.4.1)

u(x, t) = sin ,∑
n=1

∞

bne
ktλn

nπx

L

= −λn ( )
nπ

L

2

= f(x) sin dx, n = 1, 2, … .bn
2

L
∫

L

0

nπx

L

bn

u(x, t) = ( f(ξ) sin dξ) sin .∑
n=1

∞ 2

L
∫

L

0

nπξ

L
e ktλn

nπx

L
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Interchanging the sum and integration, we obtain

This solution is of the form

Here the function  is the initial value Green’s function for the heat equation in the form

which involves a sum over eigenfunctions of the spatial eigenvalue problem, .

Wave Equation
The solution of the one dimensional wave equation (2.1.2),

was found as

The Fourier coefficients were determined from the initial conditions,

as

Inserting these coefficients into the solution and interchanging integration with summation, we have

In this case, we have defined two Green’s functions,

u(x, t) = ( sin sin ) f(ξ)dξ.∫
L

0

2

L
∑
n=1

∞ nπx

L

nπξ
~

L
e ktλn

u(x, t) = G(x, ξ; t, 0)f(ξ)dξ.∫
L

0

G(x, ξ; t, 0)

G(x, ξ; t, 0) = sin sin .
2

L
∑
n=1

∞ nπx

L

nπξ

L
e ktλn

(x) = sinXn
nπx

L

utt
u(0, t)

u(x, 0)

= , 0 < t, 0 ≤ x ≤ L,c2uxx
= 0, u(L, 0) = 0, t > 0,

= f(x), (x, 0) = g(x), 0 < x < L,ut (7.4.2)

u(x, t) = [ cos + sin ] sin .∑
n=1

∞

An

nπct

L
Bn

nπct

L

nπx

L

f(x) = sin ,∑
n=1

∞

An

nπx

L

g(x) = sin ,∑
n=1

∞ nπc

L
Bn

nπx

L
(7.4.3)

An

Bn

= f(ξ) sin dξ,
2

L
∫

L

0

nπξ

L

= f(ξ) sin dξ.
L

nπc

2

L
∫

L

0

nπξ

L
(7.4.4)

u(x, t) =

=

[ sin sin cos ] f(ξ)dξ∫
∞

0

2

L
∑
n=1

∞ nπx

L

nπξ

L

nπct

L

+ [ sin sin ] g(ξ)dξ∫
∞

0

2

L
∑
n=1

∞
nπx

L

nπξ

L

sin nπct
L

nπc/L

(x, ξ, t, 0)f(ξ)dξ+ (x, ξ, t, 0)g(ξ)dξ.∫
L

0

Gc ∫
L

0

Gs (7.4.5)
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The first, , provides the response to the initial profile and the second, , to the initial velocity.
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(x, ξ, t, 0) = sin sin cosGc

2

L
∑
n=1

∞
nπx

L

nπξ

L

nπct

L

(x, ξ, t, 0) = sin sinGs

2

L
∑
n=1

∞
nπx

L

nπξ
~

L

sin nπct

L

nπc/L
(7.4.6)

Gc Gs
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7.5: Green’s Functions for the 2D Poisson Equation
In this section we consider the two dimensional Poisson equation with Dirichlet boundary conditions. We consider the problem

for the domain in Figure .

Figure : Domain for solving Poisson’s equation.

We seek to solve this problem using a Green’s function. As in earlier discussions, the Green’s function satisfies the differential
equation and homogeneous boundary conditions. The associated problem is given by

However, we need to be careful as to which variables appear in the differentiation. Many times we just make the adjustment after
the derivation of the solution, assuming that the Green’s function is symmetric in its arguments. However, this is not always the
case and depends on things such as the self-adjointedness of the problem. Thus, we will assume that the Green’s function satisfies

where the notation  means differentiation with respect to the variables  and . Thus,

With this notation in mind, we now apply Green’s second identity for two dimensions from Problem 8 in Chapter 9. We have

Inserting the differential equations, the left hand side of the equation becomes

Using the boundary conditions,  on  and  0 on , the right hand side of the equation becomes

u = f ,∇2

u = g,

 in D,

 on C, (7.5.1)

7.5.1

7.5.1

G= δ(ξ−x, η−y),  in D,∇2

G≡ 0,  on C.
(7.5.2)

G= δ(ξ−x, η−y),∇2
r′

∇r′ ξ η

G= +∇2
r′

G∂2

∂ξ
~2

G∂2

∂η2

(u G−G u)d = (u G−G u) ⋅ d .∫
D

∇2
r′ ∇2

r′ A′ ∫
C

∇r′ ∇r′ s
′ (7.5.3)

=

=

[u G−G u] d∫
D

∇2
r′ ∇2

r′ A′

[u(ξ, η)δ(ξ−x, η−y) −G(x, y; ξ, η)f(ξ, η)]dξdη∫
D

u(x, y) − G(x, y; ξ, η)f(ξ, η)dξdη.∫
D

(7.5.4)

u(ξ, η) = g(ξ, η) C G(x, y; ξ, η) = C

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90961?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/07%3A_Green's_Functions/7.05%3A_Greens_Functions_for_the_2D_Poisson_Equation
https://math.libretexts.org/Bookshelves/Differential_Equations/Partial_Differential_Equations_(Miersemann)/7%3A_Elliptic_Equations_of_Second_Order/7.3.1%3A_Boundary_Value_Problems%3A_Dirichlet_Problem
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/09%3A_Transform_Techniques_in_Physics


7.5.2 https://math.libretexts.org/@go/page/90961

Solving for , we have the solution written in terms of the Green’s function,

Now we need to find the Green’s function. We find the Green’s functions for several examples.

Find the two dimensional Green’s function for the antisymmetric Poisson equation; that is, we seek solutions that are -
independent.

Solution
The problem we need to solve in order to find the Green’s function involves writing the Laplacian in polar coordinates,

For , this is a Cauchy-Euler type of differential equation. The general solution is .

Due to the singularity at , we integrate over a domain in which a small circle of radius  is cut form the plane and apply
the two dimensional Divergence Theorem. In particular, we have

Therefore, . We note that  is arbitrary, so we will take  in the remaining discussion.

Using this solution for a source of the form , we obtain the Green’s function for Poisson’s equation as

Find the Green’s function for the infinite plane.

Solution
From Figure  we have . Therefore, the Green’s function from the last example gives

(u G−G u) ⋅ d = g(ξ, η) G ⋅ d .∫
C

∇r′ ∇r′ s
′ ∫

C

∇r′ s
′ (7.5.5)

u(x, y)

u(x, y) = G(x, y; ξ, η)f(ξ, η)dξdη+ g(ξ, η) G ⋅ d .∫
D

∫
C

∇r′ s
′

 Example 7.5.1

θ

+ = δ(r). vrr
1

r
vr

r ≠ 0 v(r) = A lnr+B

r = 0 ϵ

1 = δ(r)dA∫
Dϵ

= vdA∫
Dϵ

∇2

= ∇v⋯ ds∫
Cϵ

= dS = 2πA.∫
Cϵ

∂v

∂r
(7.5.6)

A = 1/2π B B = 0

δ (r − )r
′

G(r, ) = ln|r − |.r
′ 1

2π
r

′

 Example 7.5.2

7.5.1 |r − | =r
′ (x−ξ +(y−η)2 )2− −−−−−−−−−−−−−−

√

G(x, y, ξ, η) = ln((ξ−x +(η−y ).
1

4π
)2 )2
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Find the Green’s function for the half plane, , using the Method of Images.

Solution
This problem can be solved using the result for the Green’s function for the infinite plane. We use the Method of Images to
construct a function such that  on the boundary, . Namely, we use the image of the point  with respect to the 

-axis, .

Imagine that the Green’s function  represents a point charge at  and  provides the electric
potential, or response, at . This single charge cannot yield a zero potential along the -axis . One needs an
additional charge to yield a zero equipotential line. This is shown in Figure .

Figure : The Method of Images: The source and image source for the Green’s function for the half plane. Imagine two
opposite charges forming a dipole. The electric field lines are depicted indicating that the electric potential, or Green’s
function, is constant along 

The positive charge has a source of  at  and the negative charge is represented by the source 
at . We construct the Green’s functions at these two points and introduce a negative sign for the negative image
source. Thus, we have

These functions satisfy the differential equation and the boundary condition

Solve the homogeneous version of the problem; i.e., solve Laplace’s equation on the half plane with a specified value on the
boundary.

Solution
We want to solve the problem

 Example 7.5.3

{(x, y) ∣ y > 0}

G= 0 y = 0 (x, y)

x (x, −y)

G(x, y, ξ, η) (x, y) G(x, y, ξ, η)

(ξ, η) x (y = o)

7.5.2

7.5.2

y = 0

δ (r − )r
′

r = (x, y) −δ ( − )r
∗

r
′

= (x, −y)r
∗

G(x, y, ξ, η) = ln((ξ−x +(η−y )− ln((ξ−x +(η+y ).
1

4π
)2 )2 1

4π
)2 )2

G(x, 0, ξ, η) = ln((ξ−x +(η )− ln((ξ−x +(η ).
1

4π
)2 )2 1

4π
)2 )2

 Example 7.5.4

u = 0,∇2

u = f ,

in D,

on C, (7.5.7)
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This is displayed in Figure .

Figure : This is the domain for a semi-infinite slab with boundary value  and governed by Laplace’s
equation.

From the previous analysis, the solution takes the form

Since

We have arrived at the same surface Green’s function as we had found in Example 9.11.2 and the solution is

This page titled 7.5: Green’s Functions for the 2D Poisson Equation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed,
and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.

7.5.3

7.5.3 u(x, 0) = f(x)
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∂n
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)2 )2 1

4π
)2 )2

= =
∂G

∂n

∂G(x, y, ξ, η)

∂η

∣

∣
∣
η=0

1

π

y

(ξ−x +)2 y2

u(x, y) = f(ξ)dξ.
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π
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∞
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y

(x−ξ +)2 y2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90961?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/07%3A_Green's_Functions/7.05%3A_Greens_Functions_for_the_2D_Poisson_Equation
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
https://people.uncw.edu/hermanr/pde1/PDEbook


7.6.1 https://math.libretexts.org/@go/page/90962

7.6: Method of Eigenfunction Expansions
We have seen that the use of eigenfunction expansions is another technique for finding solutions of differential equations. In this
section we will show how we can use eigenfunction expansions to find the solutions to nonhomogeneous partial differential
equations. In particular, we will apply this technique to solving nonhomogeneous versions of the heat and wave equations.

Nonhomogeneous Heat Equation
In this section we solve the one dimensional heat equation with a source using an eigenfunction expansion. Consider the problem

The homogeneous version of this problem is given by

We know that a separation of variables leads to the eigenvalue problem

The eigenfunctions and eigenvalues are given by

We can use these eigenfunctions to obtain a solution of the nonhomogeneous problem . We begin by assuming the solution
is given by the eigenfunction expansion

In general, we assume that  and  satisfy the same boundary conditions and that  and  are continuous
functions.Note that the difference between this eigenfunction expansion and that in Section 4.3 is that the expansion coefficients
are functions of time.

In order to carry out the full process, we will also need to expand the initial profile, , and the source term, , in the basis
of eigenfunctions. Thus, we assume the forms

Recalling from Chapter 4, the generalized Fourier coefficients are given by

The next step is to insert the expansions  and  into the nonhomogeneous heat equation . We first note that

ut

u(0, t)

u(x, 0)

= k +Q(x, t), 0 < x < L, t > 0uxx

= 0, u(L, t) = 0, t > 0

= f(x), 0 < x < L (7.6.1)

vt

v(0, t)

= k , 0 < x < L, t > 0,vxx

= 0, v(L, t) = 0. (7.6.2)

+λϕ = 0, ϕ(0) = 0, ϕ(L) = 0.ϕ′′

(x) = sin , = , n = 1, 2, 3, … .ϕn

nπx

L
λn ( )

nπ

L

2

(7.6.1)

u(x, t) = (t) (x).∑
n=1

∞

an ϕn (7.6.3)

v(x, t) (x)ϕn v(x, t) (x, t)vx

f(x) Q(x, t)

f(x)

Q(x, t)

= u(x, 0)

= (0) (x),∑
n=1

∞

an ϕn

= (t) (x).∑
n=1

∞

qn ϕn

(7.6.4)

(7.6.5)

(0) = = f(x) (x)dx,an
⟨f , ⟩ϕn

∥ ∥ϕn
2

1

∥ ∥ϕn
2
∫

L

0
ϕn (7.6.6)

(t) = = Q(x, t) (x)dx.qn
⟨Q, ⟩ϕn

∥ ∥ϕn
2

1

∥ ∥ϕn
2
∫

L

0
ϕn (7.6.7)
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Inserting these expansions into the heat equation , we have

Collecting like terms, we have

Due to the linear independence of the eigenfunctions, we can conclude that

This is a linear first order ordinary differential equation for the unknown expansion coefficients.

We further note that the initial condition can be used to specify the initial condition for this first order ODE. In particular,

The coefficients can be found as generalized Fourier coefficients in an expansion of  in the basis . These are given by
Equation .

Recall from Appendix B that the solution of a first order ordinary differential equation of the form

is found using the integrating factor

Multiplying the ODE by the integrating factor, one has

After integrating, the solution can be found providing the integral is doable.

For the current problem, we have

Then, the integrating factor is

Multiplying the differential equation by the integrating factor, we find

Integrating, we have

(x, t)ut

(x, t)uxx

= (t) (x),∑
n=1

∞

ȧn ϕn

= − (t) (x).∑
n=1

∞

an λnϕn (7.6.8)

(7.6.1)

ut

(t) (x)∑
n=1

∞

ȧn ϕn

= k +Q(x, t)uxx

= −k (t) (x) + (t) (x).∑
n=1

∞

an λnϕn ∑
n=1

∞

qn ϕn (7.6.9)

[ (t) +k (t) − (t)] (x) = 0, ∀x ∈ [0,L].∑
n=1

∞

ȧn λnan qn ϕn

(t) +k (t) = (t), n = 1, 2, 3, … . ȧn λnan qn

f(x) = (0) (x).∑
n=1

∞

an ϕn

f(x) (x)ϕn

(7.6.6)

(t) +a(t)y(t) = p(t)y′

μ(t) = exp a(τ)dτ .∫
t

[y(t) exp a(τ)dτ] = p(t) exp a(τ)dτ .
d

dt
∫

t

∫
t

(t) +k (t) = (t), n = 1, 2, 3, … .ȧn λnan qn

μ(t) = exp k dτ = .∫
t

λn ek tλn

[ (t) +k (t)]ȧn λnan ek tλn

( (t) )
d

dt
an ek tλn

= (t)qn ek tλn

= (t) .qn ek tλn (7.6.10)
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or

Using these coefficients, we can write out the general solution.

We will apply this theory to a more specific problem which not only has a heat source but also has nonhomogeneous boundary
conditions.

Solve the following nonhomogeneous heat problem using eigenfunction expansions:

Solution
This problem has the same nonhomogeneous boundary conditions as those in Example 7.3.2. Recall that we can define

to obtain a new problem for . The new problem is

We can now apply the method of eigenfunction expansions to find . The eigenfunctions satisfy the homogeneous
problem

The solutions are

Now, let

Inserting  into the PDE, we have

Due to the linear independence of the eigenfunctions, we can equate the coefficients of the  terms. This gives

(t) − (0) = (τ) dτ ,an ek tλn an ∫
t

0
qn ek τλn

(t) = (0) + (τ) dτ .an an e−k tλn ∫
t

0
qn e−k (t−τ)λn

u(x, t) = (t) (x)∑
n=1

∞

an ϕn

= [ (0) + (τ) dτ] (x).∑
n=1

∞

an e−k tλn ∫
t

0
qn e−k (t−τ)λn ϕn (7.6.11)

 Example 7.6.1

−ut uxx
u(0, t)

u(x, 0)

= x+ t sin3πx, 0 ≤ x ≤ 1, t > 0
= 2, u(L, t) = t, t > 0

= 3 sin2πx+2(1 −x), 0 ≤ x ≤ 1 (7.6.12)

u(x, t) = v(x, t) +2 +(t−2)x

v(x, t)

−vt vxx
v(0, t)

v(x, 0)

= t sin3πx, 0 ≤ x ≤ 1, t > 0,
= 0, v(L, t) = 0, t > 0,

= 3 sin2πx, 0 ≤ x ≤ 1. (7.6.13)

v(x, t)

+ = 0, (0) = 0, (1) = 0.ϕ′′
n λnϕn ϕn ϕn

(x) = sin , = , n = 1, 2, 3, …ϕn

nπx

L
λn ( )

nπ

L

2

v(x, t) = (t) sinnπx.∑
n=1

∞

an

v(x, t)

[ (t) + (t)] sinnπx = t sin3πx.∑
n=1

∞

ȧn n2π2an

sinnπx
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This is a system of first order ordinary differential equations. The first set of equations are separable and are easily solved. For 
, we seek solutions of

These are given by

In the case , we seek solutions of

The integrating factor for this first order equation is given by

Multiplying the differential equation by the integrating factor, we have

Integrating, we obtain the solution

Up to this point, we have the solution

where

We still need to find .

The initial values of the expansion coefficients are found using the initial condition

It is clear that we have  for  and . Thus, the series for  has two nonvanishing coefficients,

(t) + (t)ȧn n2π2an

(t) +9 (t)ȧ3 π2a3

= 0, n ≠ 3,

= t, n = 3. (7.6.14)

n ≠ 3

= − (t).
d

dt
an n2π2an

(t) = (0) , n ≠ 3.an an e− tn2π2

n = 3

+9 (t) = t.
d

dt
a3 π2a3

μ(t) = .e9 tπ2

( (t) ) = t .
d

dt
a3 e9 tπ2

e9 tπ2

(t)a3 = (0) + τ dτ ,a3 e−9 tπ2

e−9 tπ2

∫
t

0
e9 τπ2

= (0) + ,a3 e−9 tπ2

e−9 tπ2

[ τ − ]
1

9π2
e9 τπ2 1

(9 )π2 2
e9 τπ2

t

0

= (0) + t− [1 − ] .a3 e−9 tπ2 1

9π2

1

(9 )π2 2
e−9 τπ2

(7.6.15)

u(x, t) = v(x, t) +w(x, t)

= (t) sinnπx+2 +(t−2)x,∑
n=1

∞

an (7.6.16)

(t) = (0) , n ≠ 3an an e− tn2π2

(t) = (0) + t− [1 − ]a3 a3 e−9 tπ2 1

9π2

1

(9 )π2 2
e−9 τπ2

(7.6.17)

(0),n = 1, 2, 3, …an

v(x, 0) = 3 sin2πx = (0) sinnπx.∑
n=1

∞

an

(0) = 0an n ≠ 2 (0) = 3a2 v(x, t)

(t) = 3a2 e−4 tπ2

(t) = t− [1 − ] .a3
1

9π2

1

(9 )π2 2
e−9 τπ2

(7.6.18)
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Therefore, the final solution is given by

Forced Vibrating Membrane
We now consider the forced vibrating membrane. A two-dimensional membrane is stretched over some domain . We assume
Dirichlet conditions on the boundary,  on . The forced membrane can be modeled as

The method of eigenfunction expansions relies on the use of eigenfunctions, , for  a set of indices typically of
the form  in some lattice grid of integers. The eigenfunctions satisfy the eigenvalue equation

We assume that the solution and forcing function can be expanded in the basis of eigenfunctions,

Inserting this form into the forced wave equation , we have

The linear independence of the eigenfunctions then gives the ordinary differential equation

We can solve this equation with initial conditions  and  found from

Periodic Forcing, .

Solution
It is enough to specify  in order to solve for the time dependence of the expansion coefficients. A simple example is the
case of periodic forcing,  . In this case, we expand  in the basis of eigenfunctions,

u(x, t) = 2 +(t−2)x+3 sin2πx+ sin3πx.e−4 tπ2
9 t−(1 − )π2 e−9 τπ2

81π4

D

u = 0 ∂D

utt

u(r, t)

u(r, 0)

= u+Q(r, t), r ∈ D, t > 0,c2∇2

= 0, r ∈ ∂D, t > 0,

= f(r), (r, 0) = g(r), r ∈ D.ut (7.6.19)

(r)ϕα α ∈ J ⊂ Z2

(i, j)

(r) = − (r), (r) = 0, on ∂D. ∇2ϕα λαϕα ϕα

u(r, t)

Q(r, t)

= (t) (r),∑
α∈J

aα ϕα

= (t) (r).∑
α∈J

qα ϕα (7.6.20)

(7.6.19)

utt

(t) (r)∑
α∈J

äα ϕα

0

= u+Q(r, t)c2∇2

= − (t) (r) + (t) (r)c2 ∑
α∈J

λαaα ϕα ∑
α∈J

qα ϕα

= [ (t) + (t) − (t)] (r).∑
α∈J

äα c2λαaα qα ϕα (7.6.21)

(t) + (t) = (t).äα c2λαaα qα

(0)aα (0)ȧα

f(r) = u(r, 0) = (0) (r),∑
α∈J

aα ϕα

g(r) = (r, 0) = (0) (r).ut ∑
α∈J

ȧα ϕα (7.6.22)

 Example 7.6.2

Q(r, t) = G(r) cosωt

Q(r, t)
Q(r, t) = h(r) cosωt Q

Q(r, t)

G(r) cosωt

= (t) (r),∑
α∈J

qα ϕα

= cosωt (r).∑
α∈J

γα ϕα (7.6.23)
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Inserting these expressions into the forced wave equation , we obtain a system of differential equations for the
expansion coefficients,

In order to solve this equation we borrow the methods from a course on ordinary differential equations for solving
nonhomogeneous equations. In particular we can use the Method of Undetermined Coefficients as reviewed in Section B.3.1.
The solution of these equations are of the form

where  satisfies the homogeneous equation,

and  is a particular solution of the nonhomogeneous equation,

The solution of the homogeneous problem  is easily founds as

where .

The particular solution is found by making the guess . Inserting this guess into Equation (ceqn2), we have

Solving for , we obtain

Then, the general solution is given by

where  and 

In the case where , we have a resonant solution. This is discussed in Section FO on forced oscillations. In this case
the Method of Undetermined Coefficients fails and we need the Modified Method of Undetermined Coefficients. This is
because the driving term, , is a solution of the homogeneous problem. So, we make a different guess for the particular
solution. We let

Then, the needed derivatives are

Inserting this guess into Equation (ceqn 2 ) and noting that , we have

Therefore,  and

So, the particular solution becomes

(7.6.19)

(t) + (t) = cosωt.äα c2λαaα γα

(t) = (t) + (t),aα aαh aαp

(t)aαh

(t) + (t) = 0,äαh c2λαaαh (7.6.24)

(t)aαp

(t) + (t) = cosωt.äαp c2λαaαp γα (7.6.25)

(7.6.24)

(t) = cos( t) + sin( t),aαh c1α ω0α c2α ω0α

= cω0α λα
−−

√

(t) = cosωtaαp Aα

[− + ] cosωt = cosωtω2 c2λα Aα γα

Aα

= , ≠ .Aα

γα

− +ω2 c2λα
ω2 c2λα

(t) = cos( t) + sin( t) + cosωt,aα c1α ω0α c2α ω0α
γα

− +ω2 c2λα

= cω0α λα
−−

√ ≠ω2 c2λα

=ω2 c2λα

cosωtγα

(t) = t ( cosωt+ sinωt) .aαp Aα Bα

(t)aαp

(t)aαp

= ωt (− sinωt+ cosωt) + cosωt+ sinωtAα Bα Aα Bα

= − t ( cosωt+ sinωt) −2ω sinωt+2ω cosωtω2 Aα Bα Aα Bα

= − (t) −2ω sinωt+2ω cosωtω2aαp Aα Bα (7.6.26)

=ω2 c2λα

−2ω sinωt+2ω cosωt = cosωt.Aα Bα γα

= 0Aα

= .Bα

γα

2ω

(t) = t sinωt.aαp
γα

2ω
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The full general solution is then

where .

We see from this result that the solution tends to grow as  gets large. This is what is called a resonance. Essentially, one is
driving the system at its natural frequency for one of the frequencies in the system. A typical plot of such a solution in Figure 

.

Figure : Plot of a solution showing resonance.

This page titled 7.6: Method of Eigenfunction Expansions is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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2ω
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7.7: Green’s Function Solution of Nonhomogeneous Heat Equation
We solved the one dimensional heat equation with a source using an eigenfunction expansion. In this section we rewrite the
solution and identify the Green’s function form of the solution. Recall that the solution of the nonhomogeneous problem,

is given by Equation (7.6.11)

The generalized Fourier coefficients for  and  are given by

The solution in Equation  can be rewritten using the Fourier coefficients in Equations  and .

Defining

we see that the solution can be written in the form

Thus, we see that  is the initial value Green’s function and  is the general Green's function for this problem.

ut

u(0, t)

u(x, 0)

= k +Q(x, t), 0 < x < L, t > 0,uxx

= 0, u(L, t) = 0, t > 0,

= f(x), 0 < x < L, (7.7.1)

u(x, t) = (t) (x)∑
n=1

∞

an ϕn

= [ (0) + (τ) dτ] (x) ⋅ (7 ⋅ 134)∑
n=1

∞

an e−k tλn ∫
t

0
qn e−k (t−τ)λn ϕn (7.7.2)

(0)an (t)qn

(0) = f(x) (x)dx,an
1

∥ ∥ϕn
2
∫

L

0
ϕn (7.7.3)

(t) = Q(x, t) (x)dx.qn
1

∥ ∥ϕn
2
∫

L

0
ϕn (7.7.4)

(7.7.2) (7.7.3) (7.7.4)

u(x, t) =

=

=

=

[ (0) + (τ) dτ] (x)∑
n=1

∞

an e−k tλn ∫
t

0
qn e−k (t−τ)λn ϕn

(0) (x) + ( (τ) (x))dτ∑
n=1

∞

an e−k tλn ϕn ∫
t

0
∑
n=1

∞

qn e−k (t−τ)λn ϕn

( f(ξ) (ξ)dξ) (x)∑
n=1

∞ 1

∥ ∥ϕn
2
∫

L

0
ϕn e−k tλn ϕn

+ ( Q(ξ, τ) (ξ)dξ) (x)dτ∫
t

0
∑
n=1

∞ 1

∥ ∥ϕn
2
∫

L

0
ϕn e−k (t−τ)λn ϕn

( ) f(ξ)dξ∫
L

0
∑
n=1

∞ (x) (ξ)ϕn ϕn e−k tλn

∥ ∥ϕn
2

+ ( )Q(ξ, τ)dξdτ .∫
t

0
∫

L

0
∑
n=1

∞ (x) (ξ)ϕn ϕn e−k (t−τ)λn

∥ ∥ϕn
2

(7.7.5)

G(x, t; ξ, τ) =∑
n=1

∞ (x) (ξ)ϕn ϕn e−k (t−τ)λn

∥ ∥ϕn
2

u(x, t) = G(x, t; ξ, 0)f(ξ)dξ+ G(x, t; ξ, τ)Q(ξ, τ)dξdτ .∫
L

0
∫

t

0
∫

L

0

G(x, t; ξ, 0) G(x, t; ξ, τ)
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The solution can be written in terms of the initial value Green’s function, , and the general Green’s function, 
.

The only thing left is to introduce nonhomogeneous boundary conditions into this solution. So, we modify the original problem to
the fully nonhomogeneous heat equation:

As before, we begin with the expansion of the solution in the basis of

However, due to potential convergence problems, we cannot expect that  can be obtained by simply differentiating the series
twice and expecting the resulting series to converge to . So, we need to be a little more careful.

We first note that

Solving for the expansion coefficients, we have

In order to proceed, we need an expression for . We can find this using Green’s identity from Section 4.2.2.

We start with

and let . Then,

Thus,

Inserting this result into the equation for , we have

As we had seen before, this first order equation can be solved using the integrating factor

 Note

G(x, t; ξ, 0)
G(x, t; ε, τ)

ut

u(0, t)

u(x, 0)

= k +Q(x, t), 0 < x < L, t > 0uxx

= α(t), u(L, t) = β(t), t > 0

= f(x), 0 < x < L (7.7.6)

u(x, t) = (t) (x)∑
n=1

∞

an ϕn

uxx
uxx

= (t) (x) = k +Q(x, t).ut ∑
n=1

∞

ȧn ϕn uxx

(t) = .ȧ
(k +Q(x, t)) (x)dx∫ L

0 uxx ϕn

∥ ∥ϕn
2

(x)dx∫ b

a
uxxϕn

(uLv−vLu)dx =∫
b

a

[p (u −v )]v′ u′ b

a

v= ϕn

(u(x, t) (x) − (x) (x, t))dx =∫
L

0
ϕ′′
n ϕn uxx

(− u(x, t) + (x, t)) (x)dx =∫
L

0
λn uxx ϕn

− − (x, t) (x)dx =λnan∥ ∥ϕn
2 ∫

L

0
uxx ϕn

[u(x, t) (x) − (x) (x, t))]ϕ′
n ϕn ux

L
0

[u(L, t) (L) − (L) (L, t))]ϕ′
n ϕn ux

−[u(0, t) (0) − (0) (0, t))]ϕ′
n ϕn ux

β(t) (L) −α(t) (0).ϕ′
n ϕ′

n

(x, t) (x)dx = − +α(t) (0) −β(t) (L).∫
L

0
uxx ϕn λnan∥ ∥ϕn

2
ϕ′
n ϕ′

n

(t)ȧn

(t) = −k (t) + (t) +k .ȧ λnan qn
α(t) (0) −β(t) (L)ϕ′

n ϕ′
n

∥ ∥ϕn
2
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Multiplying the differential equation by the integrating factor, we find

Integrating, we have

or

We can now insert these coefficients into the solution and see how to extract the Green’s function contributions. Inserting the
coefficients, we have

Recall that the generalized Fourier coefficients for  and  are given by

The solution in Equation  can be rewritten using the Fourier coefficients in Equations  and .

μ(t) = exp k dτ = .∫
t

λn ek tλn

[ (t) +k (t)]ȧn λnan ek tλn

( (t) )
d

dt
an ek tλn

= [ (t) +k ]qn
α(t) (0) −β(t) (L)ϕ′

n ϕ′
n

∥ ∥ϕn
2

ek tλn

= [ (t) +k ] .qn
α(t) (0) −β(t) (L)ϕ′

n ϕ′
n

∥ ∥ϕn
2

ek tλn (7.7.7)

(t) − (0) = [ (τ) +k ] dτ ,an ek tλn an ∫
t

0
qn

α(τ) (0) −β(τ) (L)ϕ′
n ϕ′

n

∥ ∥ϕn
2

ek τλn

(t) = (0) + [ (τ) +k ] dτ .an an e−k tλn ∫
t

0
qn

α(τ) (0) −β(τ) (L)ϕ′
n ϕ′

n

∥ ∥ϕn
2

e−k (t−τ)λn

u(x, t) =

=

(t) (x)∑
n=1

∞

an ϕn

[ (0) + (τ) dτ] (x)∑
n=1

∞

an e−k tλn ∫
t

0
qn e−k (t−τ)λn ϕn

+ ( [k ] dτ) (x)∑
n=1

∞

∫
t

0

α(τ) (0) −β(τ) (L)ϕ′
n ϕ′

n

∥ ∥ϕn
2

e−k (t−τ)λn ϕn (7.7.8)

(0)an (t)qn

(0) = f(x) (x)dx,an
1

∥ ∥ϕn
2
∫

L

0
ϕn (7.7.9)

(t) = Q(x, t) (x)dx.qn
1

∥ ∥ϕn
2
∫

L

0
ϕn (7.7.10)

(7.7.8) (7.7.9) (7.7.10)
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As before, we can define the general Green’s function as

Then, we can write the solution to the fully homogeneous problem as

The first integral handles the source term, the second integral handles the initial condition, and the third term handles the fixed
boundary conditions.

This general form can be deduced from the differential equation for the Green’s function and original differential equation by using
a more general form of Green’s identity. Let the heat equation operator be defined as  . The differential equations
for  and  for   and , are taken to be

Multiplying the first equation by  and the second by , we obtain

Now, we subtract the equations and integrate with respect to  and . This gives

u(x, t) =

=

=

=

[ (0) + (τ) dτ] (x)∑
n=1

∞

an e−k tλn ∫
t

0
qn e−k (t−τ)λn ϕn

+ ( [k ] dτ) (x)∑
n=1

∞

∫
t

0

α(τ) (0) −β(τ) (L)ϕ′
n ϕ′

n

∥ ∥ϕn
2

e−k (t−τ)λn ϕn

(0) (x) + ( (τ) (x))dτ∑
n=1

∞

an e−k tλn ϕn ∫
t

0
∑
n=1

∞

qn e−k (t−τ)λn ϕn

+ ([k ] ) (x)dτ∫
t

0
∑
n=1

∞ α(τ) (0) −β(τ) (L)ϕ′
n ϕ′

n

∥ ∥ϕn
2

e−k (t−τ)λn ϕn

( f(ξ) (ξ)dξ) (x)∑
n=1

∞ 1

∥ ∥ϕn
2
∫

L

0
ϕn e−k tλn ϕn

+ ( Q(ξ, τ) (ξ)dξ) (x)dτ∫
t

0
∑
n=1

∞ 1

∥ ∥ϕn
2
∫

L

0
ϕn e−k (t−τ)λn ϕn

+ ([k ] ) (x)dτ∫
t

0
∑
n=1

∞ α(τ) (0) −β(τ) (L)ϕ′
n ϕ′

n

∥ ∥ϕn
2

e−k (t−τ)λn ϕn

( ) f(ξ)dξ∫
L

0
∑
n=1

∞ (x) (ξ)ϕn ϕn e−k tλn

∥ ∥ϕn
2

+ ( )Q(ξ, τ)d dτ .∫
t

0
∫

L

0
∑
n=1

∞ (x) (ξ)ϕn ϕn e−k (t−τ)λn

∥ ∥ϕn
2

ξ2

+k ( )α(τ)dτ∫
t

0
∑
n=1

∞ (x) (0)ϕn ϕ′
n e−k (t−τ)λn

∥ ∥ϕn
2

−k ( ) β(τ)dτ .∫
t

0
∑
n=1

∞ (x) (L)ϕn ϕ′
n e−k (t−τ)λn

∥ ∥ϕn
2

(7.7.11)

G(x, t; ξ, τ) = .∑
n=1

∞ (x) (ξ)ϕn ϕn e−k (t−τ)λn

∥ ∥ϕn
2

u(x, t) = G(x, t; ξ, τ)Q(ξ, τ)dξdτ + G(x, t; ξ, 0)f(ξ)dξ∫
t

0
∫

L

0
∫

L

0

+k [α(τ) (x, 0; t, τ) −β(τ) (x,L; t, τ)]dτ .∫
t

0

∂G

∂ξ

∂G

∂ξ
(7.7.12)

L = −k∂
∂t

∂ 2

∂x2

u(x, t) G(x, t; ξ, τ) 0 ≤ x, ξ ≤ L t, τ ≥ 0

Lu(x, t) = Q(x, t),

LG(x, t; ξ, τ) = δ(x−ξ)δ(t−τ).
(7.7.13)

G(x, t; ξ, τ) u(x, t)

G(x, t; ξ, τ)Lu(x, t) = G(x, t; ξ, τ)Q(x, t),

u(x, t)LG(x, t; ξ, τ) = δ(x−ξ)δ(t−τ)u(x, t).
(7.7.14)

x t
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and

Equating these two results and solving for , we have

Exchanging  with  and assuming that the Green’s function is symmetric in these arguments, we have

This result is almost in the desired form except for the last integral. Thus, if

then we have

This page titled 7.7: Green’s Function Solution of Nonhomogeneous Heat Equation is shared under a CC BY-NC-SA 3.0 license and was
authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.

=

=

[G(x, t; ξ, τ)Lu(x, t) −u(x, t)LG(x, t; ξ, τ)]dxdt∫
∞

0
∫

L

0

[G(x, t; ξ, τ)Q(x, t) −δ(x−ξ)δ(t−τ)u(x, t)]dxdt∫
∞

0
∫

L

0

G(x, t; ξ, τ)Q(x, t)dxdt−u(ξ, τ).∫
∞

0
∫

L

0
(7.7.15)

=

=

[G(x, t; ξ, τ)Lu(x, t) −u(x, t)LG(x, t; ξ, τ)]dxdt∫
∞

0
∫

L

0

[G(x, t; ξ, τ) −u(x, t) (x, t; ξ, τ)] dtdx∫
L

0
∫

∞

0
ut Gt

−k [G(x, t; ξ, τ) (x, t) −u(x, t) (x, t; ξ, τ)] dxdt∫
∞

0
∫

L

0
uxx Gxx

[ −2 u(x, t) (x, t; ξ, τ)dt]dx∫
L

0
G(x, t; ξ, τ) |ut

∞
0 ∫

∞

0
Gt

−k dxdt∫
∞

0
[G(x, t; ξ, τ) (x, t) −u(x, t) (x, t; ξ, τ)]

∂u

∂x

∂G

∂x

L

0

(7.7.16)

u(ξ, τ)

u(ξ, τ) = G(x, t; ξ, τ)Q(x, t)dxdt∫
∞

0
∫

L

0

+k dxdt∫
∞

0
[G(x, t; ξ, τ) (x, t) −u(x, t) (x, t; ξ, τ)]

∂u

∂x

∂G

∂x

L

0

+ [G(x, 0; ξ, τ)u(x, 0) +2 u(x, t) (x, t; ξ, τ)dt]dx.∫
L

0
∫

∞

0
Gt (7.7.17)

(ξ, τ) (x, t)

u(x, t) = G(x, t; ξ, τ)Q(ξ, τ)dξdτ∫
∞

0
∫

L

0

+k dxdt∫
∞

0
[G(x, t; ξ, τ) (ξ, τ) −u(ξ, τ) (x, t; ξ, τ)]

∂u

∂ξ

∂G

∂ξ

L

0

+ G(x, t; ξ, 0)u(ξ, 0)dξ+2 u(ξ, τ) (x, t; ξ, τ)dτdξ∫
L

0
∫

L

0
∫

∞

0
Gτ (7.7.18)

u(ξ, τ) (x, t; ξ, τ)dτdξ = 0,∫
L

0
∫

∞

0
Gτ

u(x, t) = G(x, t; ξ, τ)Q(ξ, τ)dξdτ + G(x, t; ξ, 0)u(ξ, 0)dξ∫
∞

0
∫

L

0
∫

L

0

+k dxdt.∫
∞

0
[G(x, t; ξ, τ) (ξ, τ) −u(ξ, τ) (x, t; ξ, τ)]

∂u

∂ξ

∂G

∂ξ

L

0

(7.7.19)
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7.8: Summary
We have seen throughout the chapter that Green’s functions are the solutions of a differential equation representing the effect of a
point impulse on either source terms, or initial and boundary conditions. The Green’s function is obtained from transform methods
or as an eigenfunction expansion. In the text we have occasionally rewritten solutions of differential equations in term’s of Green’s
functions. We will first provide a few of these examples and then present a compilation of Green’s Functions for generic partial
differential equations.

For example, in section 7.4 we wrote the solution of the one dimensional heat equation as

where

and the solution of the wave equation as

where

We note that setting  in , we obtain

This is the Fourier sine series representation of the Dirac delta function, . Similarly, if we differentiate  with
repsect to  and set , we once again obtain the Fourier sine series representation of the Dirac delta function.

It is also possible to find closed form expression for Green’s functions, which we had done for the heat equation on the infinite
interval,

where

and for Poisson’s equation,

where the three dimensional Green’s function is given by

We can construct Green’s functions for other problems which we have seen in the book. For example, the solution of the two
dimensional wave equation on a rectangular membrane was found in Equation (6.1.26) as

u(x, t) = G(x, ξ; t, 0)f(ξ)dξ∫
L

0

G(x, ξ; t, 0) = sin sin ,
2

L
∑
n=1

∞ nπx

L

nπξ

L
e ktλn

u(x, t) = (x, ξ, t, 0)f(ξ)dξ+ (x, ξ, t, 0)g(ξ)dξ,∫
L

0
Gc ∫

L

0
Gs

(x, ξ, t, 0) = sin sin cos ,Gc

2

L
∑
n=1

∞ nπx

L

nπξ

L

nπct

L

(x, ξ, t, 0) = sin sin .Gs

2

L
∑
n=1

∞ nπx

L

nπξ

L

sin nπct

L

nπc/L

t = 0 (x, ξ; t, 0)Gc

(x, ξ, 0, 0) = sin sin .Gc

2

L
∑
n=1

∞ nπx

L

nπξ

L

δ(x−ξ) (x, ξ, t, 0)Gs

t t = 0

u(x, t) = G(x, t; ξ, 0)f(ξ)dξ,∫
∞

−∞

G(x, t; ξ, 0) =
e−(x−ξ /4t)

2

4πt
−−−

√

ϕ(r) = G(r, )f ( ) ,∫
V

r′ r′ d3r′

G(r, ) = .r′ 1

|r − |r′
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where

where the angular frequencies are given by

Rearranging the solution, we have

where

and

Once again, we note that setting  in  and setting  in , we obtain a Fourier series representation of
the Dirac delta function in two dimensions,

Another example was the solution of the two dimensional Laplace equation on a disk given by Equation (6.3.28). We found that

We saw that this solution can be written as

where the Green’s function could be summed giving the Poisson kernel

We had also investigated the nonhomogeneous heat equation in section 9.11.4,

u(x, y, t) = ( cos t+ sin t) sin sin ,  (7.153) ∑
n=1

∞

∑
m=1

∞

anm ωnm bnm ωnm

nπx

L

mπy

H
(7.8.1)

= f(x, y) sin sin dxdy,anm
4

LH
∫

H

0
∫

L

0

nπx

L

mπy

H
(7.8.2)

= g(x, y) sin sin dxdy,bnm
4

LHωnm

∫
H

0
∫

L

0

nπx

L

mπy

H
(7.8.3)

= c .ωnm +( )
nπ

L

2
( )
mπ

H

2
− −−−−−−−−−−−−−

√ (7.8.4)

u(x, y, t) = [ (x, y; ξ, η; t, 0)f(ξ, η) + (x, y; ξ, η; t, 0)g(ξ, η)] dξdη,∫
H

0
∫

L

0
Gc Gs

(x, y; ξ, η; t, 0) = sin sin sin sin cos tGc

4

LH
∑
n=1

∞

∑
m=1

∞ nπx

L

nπξ
~

L

mπy

H

mπη

H
ωnm

(x, y; ξ, η; t, 0) = sin sin sin sin .Gs

4

LH
∑
n=1

∞

∑
m=1

∞
nπx

L

nπξ

L

mπy

H

mπη

H

sin tωnm

ωnm

t = 0 (x, ξ; t, 0)Gc t = 0
∂ (x,ζ;t,0)Gc

∂t

δ(x−ξ)δ(y−η) = sin sin sin sin .
4

LH
∑
n=1

∞

∑
m=1

∞
nπx

L

nπξ

L

mπy

H

mπη

H

u(r, θ) = + ( cosnθ+ sinnθ) .
a0

2
∑
n=1

∞

an bn rn (7.8.5)

= f(θ) cosnθdθ, n = 0, 1, … ,an
1

πan
∫

π

−π

(7.8.6)

= f(θ) sinnθdθ n = 1, 2 …bn
1

πan
∫

π

−π

(7.8.7)

u(r, θ) = G(θ,ϕ; r, a)f(ϕ)dϕ,∫
π

−π

G(θ,ϕ; r, a) = .
1

2π

−a2 r2

+ −2ar cos(θ−ϕ)a2 r2
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We found that the solution of the heat equation is given by

where

Note that setting , we again get a Fourier sine series representation of the Dirac delta function.

In general, Green’s functions based on eigenfunction expansions over eigenfunctions of Sturm-Liouville eigenvalue problems are a
common way to construct Green’s functions. For example, surface and initial value Green’s functions are constructed in terms of a
modification of delta function representations modified by factors which make the Green’s function a solution of the given
differential equations and a factor taking into account the boundary or initial condition plus a restoration of the delta function when
applied to the condition. Examples with an indication of these factors are shown below.

1. Surface Green’s Function: Cube 

2. Surface Green’s Function: Sphere 

3. Initial Value Green’s Function:  Heat Equation on 

4. Initial Value Green’s Function: 1D Heat Equation on infinite domain

We can extend this analysis to a more general theory of Green’s functions. This theory is based upon Green’s Theorems, or
identities.

1. Green’s First Theorem

This is easily proven starting with the identity

integrating over a volume of space and using Gauss’ Integral Theorem.
2. Green’s Second Theorem

−k = h(x, t), 0 ≤ x ≤ L, t > 0.ut uxx

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = f(x), 0 ≤ x ≤.

(7.8.8)

u(x, t) = f(ξ)G(x, ξ; t, 0)dξ+ h(ξ, τ)G(x, ξ; t, τ)d dτ ,∫
L

0
∫

t

0
∫

L

0
ξτ

G(x, ξ; t, τ) = sin sin
2

L
∑
n=1

∞ nπx

L

nπξ
~

L
e− (t−τ)ω2

n

t = τ

[0, a] × [0, b] × [0, c]

g (x, y, z; , , c) = [ / ].x′ y′ ∑
ℓ,n

sin sin sin sin
2

a

ℓπx

a

ℓπx′

a

2

b

nπy

b

nπy′

b
  

δ-function 

sinh zγℓn
  

D.E. 

sinh cγℓn
  

restore δ

[0, a] × [0, π] × [0, 2π]

g (r,ϕ, θ; a, , ) = [ / ].ϕ′ θ′ ∑
ℓ,m

( ) (ψθ)Y m∗
ℓ ψ′θ′ Y m∗

ℓ
  

δ-function 

rℓ
 
D.E. 

aℓ
 

restore δ

1D [0,L], =kn
nπ

L

g (x, t; , ) = [ / ].x′ t0 ∑
n

sin sin
2

L

nπx

L

nπx′

L
  

δ− function 

e− ta2k2
n

  
D.E. 

e−a2k2
nt0

  
restore δ

g (x, t; , 0) = = .x′ dk
1

2π
∫

∞

−∞
eik(x− )x′

  
δ− function 

e− ta2k2

  
D.E. 

e− /4 t(x− )x′ 2
a2

4π ta2− −−−−
√

φ∇χ ⋅ dS = (∇φ ⋅ ∇χ+φ χ)dV .∮
S

n̂ ∫
V

∇2

∇ ⋅ (φ∇χ) = ∇φ ⋅ ∇χ+φ χ,∇2

(φ χ−χ φ)dV = (φ∇χ−χ∇φ) ⋅ dS.∫
V

∇2 ∇2 ∮
S

n̂
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This is proven by interchanging  and  in the first theorem and subtracting the two versions of the theorem.

The next step is to let  and . Then,

As we had seen earlier for Poisson’s equation, inserting the differential equation yields

If we have the Green’s function, we only need to know the source term and boundary conditions in order to obtain the solution to a
given problem.

In the next sections we provide a summary of these ideas as applied to some generic partial differential equations.

This is an adaptation of notes from J. Franklin’s course on mathematical physics.

Laplace’s Equation: .
1. Boundary Conditions

a. Dirichlet  is given on the surface.
b. Neumann  is given on the surface.

Boundary conditions can be Dirichlet on part of the surface and Neumann on part. If they are Neumann on the whole
surface, then the Divergence Theorem requires the constraint

2. Solution by Surface Green's Function, .
a. Dirichlet conditions

b. Neumann conditions

Use of  is readily generalized to any number of dimensions.

φ χ

φ = u χ = G

(u G−G u)dV = (u∇G−G∇u) ⋅ dS.∫
V

∇2 ∇2 ∮
S

n̂

u(x, y) = GfdV + (u∇G−G∇u) ⋅ dS.∫
V

∮
S

n̂

1

 Note

ψ = 0∇2

−ψ

− ⋅ ∇ψ =n̂
∂ψ

∂n

 Note

∫ dS = 0
∂ψ

∂n

g( , )r⃗  r⃗ ′

( , )= 0,∇2gD r
→

r ⃗ ′

( , )= ( − ) ,gD r
→

s r ⃗ ′s δ(2) r
→

s r
→′

s

ψ( ) = ∫ ( , )ψ( )d .r
→

gD r
→

r
→′

s r
→′

s S ′

( , )= 0,∇2gN r
→

r
→′

( , )= ( − ) ,
∂gN
∂n

r
→

s r
→′

s δ(2) r
→

s r
→′

s

ψ( ) = ∫ ( , ) ( )d .r
→

gN r
→

r
→′

s

∂ψ

∂n
r

→′

s S ′

 Note

g
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Homogeneous Time Dependent Equations
1. Typical Equations

a.      Diffusion/Heat Equation .
b. Schrödinger Equation .

c. Wave Equation .
d. General form: .

2. Initial Value Green’s Function, .

a. Homogeneous Boundary Conditions
i.      Diffusion, or Schrödinger Equation (ist order in time), .

where

 satisfies homogeneous boundary conditions.
ii. Wave Equation

The first two properties in (a) above hold, but

For the diffusion and Schrödinger equations the initial condition is Dirichlet in time. For the wave equation the
initial condition is Cauchy, where  and  are given.

b. Inhomogeneous, Time Independent (steady) Boundary Conditions
i. Solve Laplace’s equation, , for inhomogeneous B.C.’s
ii. Solve homogeneous, time-dependent equation for

iii. Then .

 is the transient part and  is the steady state part.

3. Time Dependent Boundary Conditions with Homogeneous Initial Conditions

a. Use the Boundary Value Green’s Function, , which is similar to the surface Green’s function in an earlier
section.

or

Ψ = Ψ∇2 1
a2

∂
∂t

− Ψ+UΨ = i Ψ∇2 ∂
∂t

Ψ = Ψ∇2 1
c2

∂ 2

∂t2

DΨ = T Ψ

g( , ; t, )r
→

r
→′

t′

Dg = T g

Ψ( , t) = ∫ g( , ; t, )Ψ( , ) ,r
→

r
→

r
→′

t0 r′ t0 d3r′

g (r, ; , ) = δ (r − ) ,r′ t0 t0 r′

g ( )rs

Ψ(r, t) = ∫ [ (r, ; t, ) Ψ( , ) + (r, ; t, ) Ψ( , )] .gc r′ t0 r′ t0 gs r′ t0 r′ t0 d3r′

(r, ; , ) = δ (r − )gc r′ t0 t0 r′

(r, ; , ) = δ (r − )ġs r′ t0 t0 r′

 Note

Ψ Ψ

= 0∇2ψs

(r, t) satisfying  (r, ) = Ψ(r, ) − (r).Ψt Ψt t0 t0 ψs

Ψ(r, t) = (r, t) + (r)Ψt ψs

 Note

Ψt ψs

h (r, ; t, )r′
s t′

Ψ(r, t) = (r, ; t, )Ψ( , )d ,∫
∞

t0

hD r′
s′ t′ r′

s′ t′ t′

Ψ(r, t) = (r, ; t, ) Ψ( , )d∫
∞

t0

∂hN
∂n

r′
s t′ r′

s t′ t′
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b. Properties of  :

c. 

For inhomogeneous I.C.,

Inhomogeneous Steady State Equation
1. Poisson's Equation 

a. Green’s Theorem:

where  denotes differentiation with respect to .
b. Properties of 

i. .
ii.  or .

iii. Solution

c. For the case of pure Neumann B.C.’s, the Divergence Theorem leads to the constraint

If there are pure Neumann conditions and  is finite and  0 by symmetry, then  and the Green’s
function method is much more complicated to solve.

d. From the above result:

or

It is often simpler to use  for  and  for , separately.
e.  satisfies a reciprocity property,  for either Dirichlet or Neumann boundary conditions.
f.  can be considered as a potential at  due to a point charge  at , with all surfaces being grounded

conductors.

h (r, ; t, )r′
s t′

Dh = T h

( , ; t, ) = δ (t− ) ,  or  ( , ; t, ) = δ (t− ) ,hD rs r′
s t′ t′ ∂hN

∂n
rs r′

s t′ t′

h (r, ; t, ) = 0, > t,  (causality). r′
s t′ t′

 Note

Ψ = ∫ gΨ( , ) +∫ d Ψ( , ) .r′ t0 t′hD r′
s t′ d3r′

ψ(r, t) = f(r), ψ ( )  or  ( )  given. ∇2 rs
∂ψ

∂n
rs

=

∫ [ψ ( ) G(r, ) −G(r, ) ψ ( )]r′ ∇′2 r′ r′ ∇′2 r′ d3r′

∫ [ψ ( ) G(r, ) −G(r, ) ψ ( )] ⋅ ,r′ ∇′ r′ r′ ∇′ r′ dS
−→′

∇′ r′

G(r, ) :r′

G(r, ) = δ (r − )∇′2 r′ r′

= 0G|s = 0∂G
∂n′

∣∣s

ψ(r) = ∫ G(r, )f ( )r′ r′ d3r′

+∫ [ψ ( ) G(r, ) −G(r, ) ψ ( )] ⋅ .r′ ∇′ r′ r′ ∇′ r′ dS
−→′

(7.8.9)

∫ ∇ψ ⋅ = ∫ f r.dS
−→

d3

S ∫ f r ≠d3 ≠ 0⋅ Gn⃗ ′ ∇′ ∣∣ s

⋅ G(r, ) = (r, )n̂
→′

∇′ r′
s gD r′

s

(r, ) = − (r, ) .GN r′
s gN r′

s

G ∫ d3r′ g ∫ dS
−→′

G G(r, ) = G( , r)r′ r′

G(r, )r′ r q = −1/4π r′
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Inhomogeneous, Time Dependent Equations
1. Diffusion/Heat Flow .

a. 

b. Green’s Theorem in 4 dimensions  yields

c. Either  or  on  at any point .
d. , and  .

2. Wave Equation .

a. 

b. Green’s Theorem in 4 dimensions  yields

c. Cauchy initial conditions are given:  and .
d. The wave and diffusion equations satisfy a causality condition        

This page titled 7.8: Summary is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

Ψ − = f(r, t)∇2 1

a2 Ψ̇

[ − ]G(r, ; t, )∇2 1

a2

∂

∂t
r′ t′ = [ + ]G(r, ; t, )∇′2 1

a2

∂

∂t′
r′ t′

= δ (r − ) δ (t− ) .r′ t′ (7.8.10)

(r, t)

Ψ(r, t) = G(r, ; t, )f ( , )d − ∫ G(r, ; t, ) Ψ( , )∬
∞

t0

r′ t′ r′ t′ t′d3r′ 1

a2
r′ t0 r′ t0 d3r′

+ ∫ [Ψ( , t) (r, t, )− (r, ; t, ) Ψ( , )] ⋅ d .∫
∞

t0

r′
s′ ∇′GD r′

s′ t′ GN r′
s t′ ∇′ r′

s t′ dS
−→′

t′

( ) = 0GD r′
s ( ) = 0GN r′

s S r′
s

⋅ ( ) = ( ) , ( ) = − ( )n̂
′

∇′GD r′
s hD r′

s GN r′
s hN r′

s − G(r, ; t, ) =1
a2 r′ t0 g (r, ; t, )r′ t0

Ψ − = f(r, t)∇2 1
c2

Ψ∂ 2

t∂ 2

[ − ]G(r, ; t, )∇2 1

c2

∂2

∂t2
r′ t′ = [ − ]G(r, ; t, )∇′2 1

c2

∂2

∂t2
r′ t′

= δ (r − ) δ (t− ) .r′ t′ (7.8.11)

(r, t)

Ψ(r, t) = G(r, ; t, )f ( , )d∬
∞

t0

r′ t′ r′ t′ t′d3r′

− ∫ [G(r, ; t, ) Ψ( , ) −Ψ( , ) G(r, ; t, )]
1

c2
r′ t0

∂

∂t′
r′ t0 r′ t0

∂

∂t′
r′ t0 d3r′

+ ∫ [Ψ( , t) (r, ; t, ) − (r, ; t, ) ψ ( , )] ⋅ d .∫
∞

t0

r′
s ∇′GD r′

s t′ GN r′
s t′ ∇′ r′

s t′ dS
−→′

t′

Ψ( )t0 ΨΨ( )t0

G(t, ) = 0, > t.t′ t′
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7.9: Problems

Find the solution of each initial value problem using the appropriate initial value Green’s function.

a. .
b. .
c. .
d. .

Use the initial value Green’s function for  0 , to solve the following problems.

a. .
b. .

For the problem ,

a. Find the initial value Green’s function.
b. Use the Green’s function to solve .
c. Use the Green’s function to solve .

Find and use the initial value Green’s function to solve

Consider the problem .

a. Solve by direct integration.
b. Determine the Green’s function.
c. Solve the boundary value problem using the Green’s function.
d. Change the boundary conditions to .

i. Solve by direct integration.
ii. Solve using the Green’s function.

Let  be a closed curve and  the enclosed region. Prove the identity

Let  be a closed surface and  the enclosed volume. Prove Green’s first and second identities, respectively.

a. .
b. .

 Exercise 7.9.1

−3 +2y = 20 , y(0) = 0, (0) = 6y′′ y′ e−2x y′

+y = 2 sin3x, y(0) = 5, (0) = 0y′′ y′

+y = 1 +2 cosx, y(0) = 2, (0) = 0y′′ y′

−2x +2y = 3 −x, y(1) = π, (1) = 0x2y′′ y′ x2 y′

 Exercise 7.9.2

+x = f(t), x(0) = 4, (0) =x′′ x′

+x = 5x′′ t2

+x = 2 tan tx′′

 Exercise 7.9.3

− y = f(x), y(0) = 0, (0) = 1y′′ k2 y′

−y =y′′ e−x

−4y =y′′ e2x

 Exercise 7.9.4

+3x −15y = , y(1) = 1, (1) = 0.x2y′′ y′ x4ex y′

 Exercise 7.9.5

= sinx, (0) = 0, y(π) = 0y′′ y′

(0) = 5, y(π) = −3y′

 Exercise 7.9.6

C D

ϕ∇ϕ ⋅ nds = (ϕ ϕ+∇ϕ ⋅ ∇ϕ)dA.∫
C

∫
D

∇2

 Exercise 7.9.7

S V

ϕ∇ψ ⋅ ndS = (ϕ ψ+∇ϕ ⋅ ∇ψ)dV∫S ∫V ∇2

[ϕ∇ψ−ψ∇ϕ] ⋅ ndS = (ϕ ψ−ψ ϕ)dV∫
S

∫
V

∇2 ∇2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90965?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/07%3A_Green's_Functions/7.09%3A_Problems


7.9.2 https://math.libretexts.org/@go/page/90965

Let  be a closed curve and  the enclosed region. Prove Green’s identities in two dimensions.

a. First prove

b. Let  and obtain Green’s first identity,

c. Use Green’s first identity to prove Green’s second identity,

Consider the problem:

a. Solve by direct integration.
b. Compare this result to the Green’s function in part  of the last problem.
c. Verify that  is symmetric in its arguments.

Consider the boundary value problem: , with boundary conditions .

a. Find a closed form solution without using Green’s functions.
b. Determine the closed form Green’s function using the properties of Green’s functions. Use this Green’s function to obtain a

solution of the boundary value problem.
c. Determine a series representation of the Green’s function. Use this Green’s function to obtain a solution of the boundary

value problem.
d. Confirm that all of the solutions obtained give the same results.

Rewrite the solution to Problem 15 and identify the initial value Green’s function.

Rewrite the solution to Problem 16 and identify the initial value Green’s functions.

Find the Green’s function for the homogeneous fixed values on the boundary of the quarter plane , for Poisson’s
equation using the infinite plane Green’s function for Poisson’s equation. Use the method of images.

 Exercise 7.9.8

C D

(v∇ ⋅ F +F ⋅ ∇v)dA = (vF) ⋅ ds∫
D

∫
C

F = ∇u

(v u+∇u ⋅ ∇v)dA = (v∇u) ⋅ ds.∫
D

∇2 ∫
C

(u v−v u)dA = (u∇v−v∇u) ⋅ ds.∫
D

∇2 ∇2 ∫
C

 Exercise 7.9.9

= δ (x− ) , (0, ) = 0, G(π, ) = 0.
G∂2

∂x2
x0

∂G

∂x
x0 x0

b

G

 Exercise 7.9.10

−y = x, x ∈ (0, 1)y′′ y(0) = y(1) = 0

 Exercise 7.9.11

 Exercise 7.9.12

 Exercise 7.9.13

x > 0, y > 0
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Find the Green’s function for the one dimensional heat equation with boundary conditions .

Consider Laplace’s equation on the rectangular plate in Figure 6.3.1. Construct the Green’s function for this problem.

Construct the Green’s function for Laplace’s equation in the spherical domain in Figure 6.5.1.
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 Exercise 7.9.14

u(0, t) = 0 (L, t), t > 0ux

 Exercise 7.9.15

 Exercise 7.9.16
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CHAPTER OVERVIEW

8: Complex Representations of Functions

"He is not a true man of science who does not bring some sympathy to his studies, and
expect to learn something by behavior as well as by application. It is childish to rest in the
discovery of mere coincidences, or of partial and extraneous laws. The study of geometry
is a petty and idle exercise of the mind, if it is applied to no larger system than the starry
one. Mathematics should be mixed not only with physics but with ethics; that is mixed
mathematics. The fact which interests us most is the life of the naturalist. The purest
science is still biographical."

~ Henry David Thoreau (1817-1862)
8.1: Complex Representations of Waves
8.2: Complex Numbers
8.3: Complex Valued Functions
8.4: Complex Differentiation
8.5: Complex Integration
8.6: Laplace’s Equation in 2D, Revisited
8.7: Problems
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8.1: Complex Representations of Waves
We have seen that we can determine the frequency content of a function  defined on an interval  by looking for the
Fourier coefficients in the Fourier series expansion

The coefficients take forms like

However, trigonometric functions can be written in a complex exponential form. Using Euler’s formula, which was obtained using
the Maclaurin expansion of  in Example 11.7.8,

the complex conjugate is found by replacing  with  to obtain

Adding these expressions, we have

Subtracting the exponentials leads to an expression for the sine function. Thus, we have the important result that sines and cosines
can be written as complex exponentials:

So, we can write

Later we will see that we can use this information to rewrite the series as a sum over complex exponentials in the form

where the Fourier coefficients now take the form

In fact, when one considers the representation of analogue signals defined over an infinite interval and containing a continuum of
frequencies, we will see that Fourier series sums become integrals of complex functions and so do the Fourier coefficients. Thus,
we will naturally find ourselves needing to work with functions of complex variables and perform complex integrals.

We can also develop a complex representation for waves. Recall from the discussion in Section 3.6 on finite length strings that a
solution to the wave equation was given by

We can replace the sines with their complex forms as

f(t) [0,T ]

f(t) = + cos + sin .
a0

2
∑
n=1

∞

an
2πnt

T
bn

2πnt

T

= f(t) cos dt.an
2

T
∫

T

0

2πnt

T

ex

= cosθ+ i sinθ, eiθ

i −i

= cosθ− i sinθ. e−iθ

2 cosθ = + . eiθ e−iθ

cosθ =
+eiθ e−iθ

2

sinθ =
−eiθ e−iθ

2i
(8.1.1)

cos = ( + ) .
2πnt

T

1

2
e

2πint

T e−
2πint

T

f(t) = ,∑
n=−∞

∞

cne
2πint

T

= f(t) dt.cn ∫
T

0

e−
2πint

T

u(x, t) = [ sin (x+ct) + sin (x−ct)] .
1

2
∑
n=1

∞

An kn ∑
n=1

∞

An kn (8.1.2)
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Defining , we can rewrite this solution in the form

Such representations are also possible for waves propagating over the entire real line. In such cases we are not restricted to discrete
frequencies and wave numbers. The sum of the harmonics will then be a sum over a continuous range, which means that the sums
become integrals. So, we are lead to the complex representation

The forms  and  are complex representations of what are called plane waves in one dimension. The integral
represents a general wave form consisting of a sum over plane waves. The Fourier coefficients in the representation can be
complex valued functions and the evaluation of the integral may be done using methods from complex analysis. We would like to
be able to compute such integrals.

With the above ideas in mind, we will now take a tour of complex analysis. We will first review some facts about complex numbers
and then introduce complex functions. This will lead us to the calculus of functions of a complex variable, including the
differentiation and integration complex functions. This will set up the methods needed to explore Fourier transforms in the next
chapter.

This page titled 8.1: Complex Representations of Waves is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.
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8.2: Complex Numbers
Complex numbers were first introduced in order to solve some simple problems. The history of complex numbers only extends
about five hundred years. In essence, it was found that we need to find the roots of equations such as . The solution is 

. Due to the usefulness of this concept, which was not realized at first, a special symbol was introduced - the
imaginary unit, . In particular, Girolamo Cardano  was one of the first to use square roots of negative
numbers when providing solutions of cubic equations. However, complex numbers did not become an important part of
mathematics or science until the late seventh and eighteenth centuries after people like Abraham de Moivre (  ), the
Bernoulli  family and Euler took them seriously.

A complex number is a number of the form , where  and  are real numbers.  is called the real part of  and  is the
imaginary part of . Examples of such numbers are  and 5. Note that  and .

The Bernoullis were a family of Swiss mathematicians spanning three generations. It all started with Jacob Bernoulli 
 and his brother Johann Bernoulli ( ). Jacob had a son, Nicolaus Bernoulli ( ) and

Johann ( ) had three sons, Nicolaus Bernoulli II ( ), Daniel Bernoulli ( ), and Johann
Bernoulli II ( ). The last generation consisted of Johann II’s sons, Johann Bernoulli III ( ) and Jacob
Bernoulli II ( ). Johann, Jacob and Daniel Bernoulli were the most famous of the Bernoulli’s. Jacob studied with
Leibniz, Johann studied under his older brother and later taught Leonhard Euler and Daniel Bernoulli, who is known for his
work in hydrodynamics.

There is a geometric representation of complex numbers in a two dimensional plane, known as the complex plane . This is given
by the Argand diagram as shown in Figure . Here we can think of the complex number  as a point  in the -
complex plane or as a vector. The magnitude, or length, of this vector is called the complex modulus of , denoted by 

. We can also use the geometric picture to develop a polar representation of complex numbers. From Figure 
we can see that in terms of  and  we have that

Thus,

Figure : The Argand diagram for plotting complex numbers in the complex  plane.

The complex modulus, .
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x = r cos θ

y = r sinθ (8.2.1)
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Complex numbers can be represented in rectangular (Cartesian), , or polar form, . Here we define the
argument, , and modulus,  of complex numbers.

So, given  and  we have  However, given the Cartesian form, , we can also determine the polar form, since

Note that .

Locating  in the complex plane, it is possible to immediately determine the polar form from the angle and length of the
"complex vector." This is shown in Figure . It is obvious that  and .

Figure : Locating  in the complex -plane.

Write  in polar form.

Solution
If one did not see the polar form from the plot in the z-plane, then one could systematically determine the results. First, write 

 in polar form, , for some  and .

Using the above relations between polar and Cartesian representations, we have  and .
This gives . So, we have found that

We can also define binary operations of addition, subtraction, multiplication and division of complex numbers to produce a new
complex number. The addition of two complex numbers is simply done by adding the real and imaginary parts of each number. So,

Subtraction is just as easy,

We can multiply two complex numbers just like we multiply any binomials, though we now can use the fact that . For
example, we have

 Note

z = x + iy z = reiθ

θ |z| = r

r θ z = r .eiθ z = x + iy

r = ,+x2 y2− −−−−−
√

tanθ = .
y

x

(8.2.3)

r = |z|

1 + i

8.2.2 θ = π

4
r = 2

–
√

8.2.2 1 + i z

 Example 8.2.1

z = 1 + i

z = 1 + i z = reiθ r θ

r = =+x2 y2− −−−−−
√ 2

–
√ tanθ = = 1

y

x

θ = π

4

1 + i = .2
–

√ eiπ/4

(3 +2i) +(1 − i) = 4 + i. 

(3 +2i) −(1 − i) = 2 +3i.

= −1i2

(3 +2i)(1 − i) = 3 +2i −3i +2i(−i) = 5 − i. 
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We can easily add, subtract, multiply and divide complex numbers.

We can even divide one complex number into another one and get a complex number as the quotient. Before we do this, we need to
introduce the complex conjugate, , of a complex number. The complex conjugate of , where  and  are real numbers,
is given as

The complex conjugate of , is given as .

Complex conjugates satisfy the following relations for complex numbers  and  and real number .

One consequence is that the complex conjugate of  is

Another consequence is that

Thus, the product of a complex number with its complex conjugate is a real number. We can also prove this result using the
Cartesian form

Now we are in a position to write the quotient of two complex numbers in the standard form of a real plus an imaginary number.

Simplify the expression .

Solution
This simplification is accomplished by multiplying the numerator and denominator of this expression by the complex
conjugate of the denominator:

Therefore, the quotient is a complex number and in standard form it is given by 

We can also consider powers of complex numbers. For example,

But, what is  ?

In general, we want to find the th root of a complex number. Let  . To find  in this case is the same as asking for the
solution of

 Note

z̄ z = x + iy x y

= x − iy.z̄

 Note

z = x + iy = x − iyz̄

z w x

z +w¯ ¯¯̄¯̄¯̄¯̄¯̄

zw¯ ¯¯̄¯̄

z̄¯¯̄

x̄

= +z̄ w̄

= zw¯ ¯¯̄¯̄

= z

= x. (8.2.4)
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 Example 8.2.2
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z = = = .
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2

5
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given . But, this is the root of an th degree equation, for which we expect  roots. If we write  in polar form, , then we
would naively compute

For example,

But this is only one solution. We expected two solutions for .

The function  is multivalued.

The reason we only found one solution is that the polar representation for  is not unique. We note that

So, we can rewrite  as . Now, we have that

Note that these are the only distinct values for the roots. We can see this by considering the case . Then, we find that

So, we have recovered the  value. Similar results can be shown for the other  values larger than .

Now, we can finish the example we had started.

Determine the square roots of , or .

Solution
As we have seen, we first write  in polar form, . Then, introduce  and find the roots:

The th roots of unity, .

Finally, what is  ? Our first guess would be . But, we now know that there should be  roots. These roots are called the 
th roots of unity. Using the above result with  and , we have that

z = tn

z n n z z = reiθ

z1/n = (r )eiθ 1/n

= r1/neiθ/n

= [cos + i sin ] .r1/n θ

n

θ

n
(8.2.5)
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For example, we have

These three roots can be written out as

We can locate these cube roots of unity in the complex plane. In Figure  we see that these points lie on the unit circle and are
at the vertices of an equilateral triangle. In fact, all th roots of unity lie on the unit circle and are the vertices of a regular -gon
with one vertex at .

Figure : Locating the cube unity in the complex -plane.

This page titled 8.2: Complex Numbers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

= [cos + i sin ] , k = 0, … , n −1.1
–

√n 2πk

n

2πk

n

= [cos + i sin ] , k = 0, 1, 21
–

√3 2πk

3

2πk

3

= 1, − + i, − − i.1
–

√3 1

2

3
–

√

2

1

2

3
–

√

2

8.2.3
n n

z = 1

8.2.3 z

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90273?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/08%3A_Complex_Representations_of_Functions/8.02%3A_Complex_Numbers
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
https://people.uncw.edu/hermanr/pde1/PDEbook


8.3.1 https://math.libretexts.org/@go/page/90274

8.3: Complex Valued Functions
We would like to next explore complex functions and the calculus of complex functions. We begin by defining a function that takes
complex numbers into complex numbers, . It is difficult to visualize such functions. For real functions of one variable, 

, we graph these functions by first drawing two intersecting copies of  and then proceed to map the domain into the
range of .

It would be more difficult to do this for complex functions. Imagine placing together two orthogonal copies of the complex plane, 
. One would need a four dimensional space in order to complete the visualization. Instead, typically uses two copies of the

complex plane side by side in order to indicate how such functions behave. Over the years there have been several ways to
visualize complex functions. We will describe a few of these in this chapter.

We will assume that the domain lies in the -plane and the image lies in the -plane. We will then write the complex function as 
. We show these planes in Figure  and the mapping between the planes.

Figure : Defining a complex valued function, , on  for  and 

Letting  and , we can write the real and imaginary parts of :

We see that one can view this function as a function of  or a function of  and . Often, we have an interest in writing out the real
and imaginary parts of the function,  and , which are functions of two real variables,  and . We will look at several
functions to determine the real and imaginary parts.

Find the real and imaginary parts of .

Solution
For example, we can look at the simple function . It is a simple matter to determine the real and imaginary parts of
this function. Namely, we have

Therefore, we have that

In Figure  we show how a grid in the z-plane is mapped by  into the -plane. For example, the horizontal line 
 is mapped to  and . Eliminating the "parameter"  between these two equations, we have 

. This is a parabolic curve. Similarly, the horizontal line  results in the curve .

If we look at several curves,  const and  const, then we get a family of intersecting parabolae, as shown in Figure .

f : C → C

f : R → R R

f

C

z w

w = f(z) 8.3.1

8.3.1 w = f(z) C z = x + iy w = u + iv

z = x + iy w = u + iv f(z)

w = f(z) = f(x + iy) = u(x, y) + iv(x, y).

z x y

u(x, y) v(x, y) x y

 Example 8.3.1

f(z) = z2

f(z) = z2

= (x + iy = − +2ixy.z2 )2 x2 y2

u(x, y) = − , v(x, y) = 2xy.x2 y2

8.3.2 f(z) = z2 w

x = 1 u(1, y) = 1 −y2 v(1, y) = 2y y

u = 1 − /4v2 y = 1 u = /4 −1v2
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Figure :  plot showing how the function  maps the lines  and  in the -plane into parabolae in
the -plane.

Figure :  plot showing how the function  maps a grid in the -plane into the -plane.

Find the real and imaginary parts of .

Solution
For this case, we make use of Euler’s Formula.

Thus,  and  In Figure  we show how a grid in the -plane is mapped by 
into the w-plane.

Find the real and imaginary parts of .

Solution
We have that

8.3.2 2D f(z) = z2 x = 1 y = 1 z

w

8.3.3 2D f(z) = z2 z w

 Example 8.3.2

f(z) = ez

ez = ex+iy

= exeiy

= (cos y + i siny).ex (8.3.1)

u(x, y) = cos yex v(x, y) = siny.ex 8.3.4 z f(z) = ez

 Example 8.3.3

f(z) = z1/2
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Thus,

for  and . For each -value one has a different surface and curves of constant  give 
, and curves of constant nonzero complex modulus give concentric circles, , for  and  constants.

Figure :  plot showing how the function  maps a grid in the -plane into the -plane.

Find the real and imaginary parts of .

Solution
In this case we make use of the polar form of a complex number, . Our first thought would be to simply compute

However, the natural logarithm is multivalued, just like the square root function. Recalling that  for  an integer, we
have . Therefore,

The natural logarithm is a multivalued function. In fact there are an infinite number of values for a given . Of course, this
contradicts the definition of a function that you were first taught.

Thus, one typically will only report the principal value, , for  restricted to some interval of length , such as
. In order to account for the multivaluedness, one introduces a way to extend the complex plane so as to include all of

the branches. This is done by assigning a plane to each branch, using (branch) cuts along lines, and then gluing the planes
together at the branch cuts to form what is called a Riemann surface. We will not elaborate upon this any further here and refer
the interested reader to more advanced texts. Comparing the multivalued logarithm to the principal value logarithm, we have

We should not that some books use  instead of . It should not be confused with the common logarithm.

= (cos(θ +kπ) + i sin(θ +kπ)), k = 0, 1.z1/2 +x2 y2
− −−−−−

√ (8.3.2)

u = |z| cos(θ +kπ), u = |z| cos(θ +kπ)

|z| = +x2 y2− −−−−−
√ θ = (y/x)tan−1 k θ

u/v = c1 + =u2 v2 c2 c1 c2

8.3.4 2D f(z) = ez z w

 Example 8.3.4

f(z) = lnz

z = reiθ

lnz = lnr + iθ. 

= 1e2πik k

z = rei(θ+2πk)

lnz = lnr + i(θ +2πk), k =  integer. 

z

log z = lnr + iθ θ 2π

[0, 2π)

lnz = log z +2nπi.
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Figure :  plot showing how the function  maps a grid in the -plane into the -plane.

Complex Domain Coloring
Another method for visualizing complex functions is domain coloring. The idea was described by Frank A. Farris. There are a few
approaches to this method. The main idea is that one colors each point of the -plane (the domain) according to  as shown in
Figure . The modulus,  is then plotted as a surface. Examples are shown for  in Figure  and 

 in Figure .

8.3.5 2D f(z) = z√ z w

z arg(z)
8.3.6 |f(z)| f(z) = z2 8.3.7

f(z) = 1/z(1 −z) 8.3.8
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Figure : Domain coloring of the complex -plane assigning colors .

Figure : Domain coloring for  . The left figure shows the phase coloring. The right figure show the colored surface
with height .

8.3.6 z arg(z)

8.3.7 f(z) = z2

|f(z)|

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90274?pdf


8.3.6 https://math.libretexts.org/@go/page/90274

Figure : Domain coloring for  . The left figure shows the phase coloring. The right figure show the colored
surface with height .

We would like to put all of this information in one plot. We can do this by adjusting the brightness of the colored domain by using
the modulus of the function. In the plots that follow we use the fractional part of . In Figure  we show the effect for the 

-plane using . In the figures that follow we look at several other functions. In these plots we have chosen to view the
functions in a circular window.

Figure : Domain coloring for the function  showing a coloring for  and brightness based on 

One can see the rich behavior hidden in these figures. As you progress in your reading, especially after the next chapter, you should
return to these figures and locate the zeros, poles, branch points and branch cuts. A search online will lead you to other colorings
and superposition of the  grid on these figures.

As a final picture, we look at iteration in the complex plane. Consider the function . Interesting figures
result when studying the iteration in the complex plane. In Figure  we show  and , which is the iteration of 
twenty times. It leads to an interesting coloring. What happens when one keeps iterating? Such iterations lead to the study of Julia
and Mandelbrot sets. In Figure  we show six iterations of .

8.3.8 f(z) = 1/z(1 − z)
|f(z)|

ln |z| 8.3.9
z f(z) = z

8.3.9 f(z) = z arg(z) |f(z)|.

uv

f(z) = −0.75 −0.2iz2

8.3.12 f(z) (z)f 20 f

8.3.13 f(z) = (1 − i/2) sinx
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Figure : Domain coloring for the function .

Figure : Domain coloring for several functions. On the top row the domain coloring is shown for  and 
. On the second row plots for  and   are shown. In the last row

domain colorings for  and  are shown.

8.3.10 f(z) = z2

8.3.11 f(z) = z4

f(z) = sin z f(z) = 1 + z
− −−−√ f(z) = z(1/2 − z)(z − i)(z − i + 1)¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄ ¯̄¯̄ ¯̄¯̄ ¯̄¯̄ ¯̄¯̄ ¯̄ ¯̄¯̄ ¯̄¯̄ ¯̄¯̄ ¯̄¯̄ ¯̄¯̄ ¯̄

f(z) = ln z f(z) = sin(1/z)
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Figure : Domain coloring for  . The left figure shows the phase coloring. On the right is the plot for 
.

Figure : Domain coloring for six iterations of 

The following code was used in MATLAB to produce these figures.

fn = @(x) (1-i/2)*sin(x);  

xmin=-2; xmax=2; ymin=-2; ymax=2;  

Nx=500; 

Ny=500; 

x=linspace(xmin,xmax,Nx);  

y=linspace(ymin,ymax,Ny);  

[X,Y] = meshgrid(x,y); z = complex(X,Y);  

tmp=z; for n=1:6  

    tmp = fn(tmp);  

end Z=tmp;  

XX=real(Z);  

YY=imag(Z);  

R2=max(max(X.^2));  

R=max(max(XX.^2+YY.^2));  

 

circle(:,:,1) = X.^2+Y.^2 < R2;  

circle(:,:,2)=circle(:,:,1);  

8.3.12 f(z) = − 0.75 − 0.2iz2

(z)f 20

8.3.13 f(z) = (1 − i/2) sin x
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circle(:,:,3)=circle(:,:,1);  

 

addcirc(:,:,1)=circle(:,:,1)==0;  

addcirc(:,:,2)=circle(:,:,1)==0;  

addcirc(:,:,3)=circle(:,:,1)==0;  

 

warning off MATLAB:divideByZero;  

hsvCircle=ones(Nx,Ny,3);  

hsvCircle(:,:,1)=atan2(YY,XX)*180/pi+(atan2(YY,XX)*180/pi<0)*360;  

hsvCircle(:,:,1)=hsvCircle(:,:,1)/360; lgz=log(XX.^2+YY.^2)/2;  

hsvCircle(:,:,2)=0.75; hsvCircle(:,:,3)=1-(lgz-floor(lgz))/2;  

hsvCircle(:,:,1) = flipud((hsvCircle(:,:,1)));  

 

hsvCircle(:,:,2) = flipud((hsvCircle(:,:,2)));  

 

hsvCircle(:,:,3) =flipud((hsvCircle(:,:,3)));  

 

rgbCircle=hsv2rgb(hsvCircle);  

rgbCircle=rgbCircle.*circle+addcirc;  

image(rgbCircle) axis square set(gca,’XTickLabel’,{}) set(gca,’YTickLabel’,{}) 
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8.4: Complex Differentiation
Next we want to differentiate complex functions. We generalize the definition from single variable calculus,

provided this limit exists.

The computation of this limit is similar to what one sees in multivariable calculus for limits of real functions of two variables.
Letting  and , then

Letting  means that we get closer to . There are many paths that one can take that will approach . [See Figure .]

Figure : There are many paths that approach  as .

It is sufficient to look at two paths in particular. We first consider the path  constant. This horizontal path is shown in Figure 
. For this path, , since  does not change along the path. The derivative, if it exists, is then computed

as

The last two limits are easily identified as partial derivatives of real valued functions of two variables. Thus, we have shown that
when  exists,

(z) = ,f ′ lim
Δz→0

f(z+Δz) −f(z)

Δz
(8.4.1)

z = x+ iy δz = δx+ iδy

z+δx = (x+δx) + i(y+δy)

Δz → 0 z z 8.4.1

8.4.1 z Δz → 0

y =

8.4.2 Δz = Δx+ iΔy = Δx y

(z)f ′ = lim
Δz→0

f(z+Δz) −f(z)

Δz

= lim
Δx→0

u(x+Δx, y) + iv(x+Δx, y) −(u(x, y) + iv(x, y))

Δx

= + ilim
Δx→0

u(x+Δx, y) −u(x, y)

Δx
lim

Δx→0

v(x+Δx, y) −v(x, y)

Δx
(8.4.2)

(z)f ′

(z) = + if ′ ∂u

∂x

∂v

∂x
(8.4.3)
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Figure : A path that approaches  with  constant.

A similar computation can be made if instead we take the vertical path,  constant, in Figure ). In this case  and

Therefore,

We have found two different expressions for  by following two different paths to . If the derivative exists, then these two
expressions must be the same. Equating the real and imaginary parts of these expressions, we have

These are known as the Cauchy-Riemann equations .

Augustin-Louis Cauchy  was a French mathematician well known for his work in analysis. Georg Friedrich
Bernhard Riemann  was a German mathematician who made major contributions to geometry and analysis.

 is holomorphic (differentiable) if and only if the Cauchy-Riemann equations are satisfied.

.

Solution
In this case we have already seen that . Therefore,   and . We first check
the Cauchy-Riemann equations.

8.4.2 z y =

x = 8.4.1 Δz = iΔy

(z)f ′ = lim
Δz→0

f(z+Δz) −f(z)

Δz

= lim
Δy→0

u(x, y+Δy) + iv(x, y+Δy) −(u(x, y) + iv(x, y))

iΔy

= +lim
Δy→0

u(x, y+Δy) −u(x, y)

iΔy
lim

Δy→0

v(x, y+Δy) −v(x, y)

Δy
(8.4.4)

(z) = − i .f ′ ∂v

∂y

∂u

∂y
(8.4.5)

(z)f ′ z

∂u

∂x
∂v

∂x

=
∂v

∂y

= −
∂u

∂y
(8.4.6)

1

 Note

(1789 −1857)

(1826 −1866)

 Theorem 8.4.1

f(z)

 Example 8.4.1

f(z) = z2

= − +2ixyz2 x2 y2 u(x, y) = −x2 y2 v(x, y) = 2xy
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Therefore,  is differentiable.

We can further compute the derivative using either Equation  or Equation . Thus,

This result is not surprising.

.

Solution

In this case we have . Therefore,  and . But,  and . Thus, the Cauchy-
Riemann equations are not satisfied and we conclude the  is not differentiable.

Harmonic functions satisfy Laplace’s equation.

Another consequence of the Cauchy-Riemann equations is that both  and  are harmonic functions. A real-valued
function  is harmonic if it satisfies Laplace’s equation in , or

 is differentiable if and only if  and  are harmonic functions.

This is easily proven using the Cauchy-Riemann equations.

Is  harmonic?

Solution

= 2x
∂u

∂x

= 2y
∂v

∂x

=
∂v

∂y

= − .
∂u

∂y
(8.4.7)

f(z) = z2

(8.4.3) (8.4.5)

(z) = + i = 2x+ i(2y) = 2z.f ′ ∂u

∂x

∂v

∂x

 Example 8.4.2

f(z) = z̄

f(z) = x− iy u(x, y) = x v(x, y) = −y = 1∂u
∂x

= −1∂v
∂y

f(z) = z̄

 Note

u(x, y) v(x, y)

u(x, y) 2D, u = 0∇2

+ = 0. 
u∂2

∂x2

u∂2

∂y2

 Theorem 8.4.1

f(z) = u(x, y) + iv(x, y) u v

u∂2

∂x2
=

∂

∂x

∂u

∂x

=
∂

∂x

∂v

∂y

=
∂

∂y

∂v

∂x

= −
∂

∂y

∂u

∂y

= −
u∂2

∂y2
(8.4.8)

 Example 8.4.3

u(x, y) = +x2 y2
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No, it is not.

Is  harmonic?

Solution

Yes, it is.

Given a harmonic function , can one find a function, , such The harmonic conjugate function. 
 is differentiable? In this case,  are called the harmonic conjugate of .

Find the harmonic conjugate of  and determine  such that  is differentiable.

Solution
The Cauchy-Riemann equations tell us the following about the unknown function,  :

We can integrate the first of these equations to obtain

Here  is an arbitrary function of . One can check to see that this works by simply differentiating the result with respect to 
.

However, the second equation must also hold. So, we differentiate the result with respect to  to find that

Since we were supposed to get , we have that . Thus,  is a constant.

We have just shown that we get an infinite number of functions,

such that

is differentiable. In fact, for  this is nothing other than .

This page titled 8.4: Complex Differentiation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

+ = 2 +2 ≠ 0.
u∂2

∂x2

u∂2

∂y2

 Example 8.4.4

u(x, y) = −x2 y2

+ = 2 −2 = 0. 
u∂2

∂x2

u∂2

∂y2

u(x, y) v(x, y)

f(z) = u(x, y) + iv(x, y) v u

 Example 8.4.5

u(x, y) = −x2 y2 f(z) = u+ iv u+ iv

v(x, y)

= − = 2y,
∂v

∂x

∂u

∂y

= = 2x.
∂v

∂y

∂u

∂x

v(x, y) = ∫ 2ydx = 2xy+c(y). 

c(y) y

x

y

= 2x+ (y). 
∂v

∂y
c′

2x (y) = 0c′ c(y) = k

v(x, y) = 2xy+k,

f(z) = − + i(2xy+k)x2 y2

k = 0 f(z) = z2
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8.5: Complex Integration
We have introduced functions of a complex variable. We also established when functions are differentiable as complex functions,
or holomorphic. In this chapter we will turn to integration in the complex plane. We will learn how to compute complex path
integrals, or contour integrals. We will see that contour integral methods are also useful in the computation of some of the real
integrals that we will face when exploring Fourier transforms in the next chapter.

Complex Path Integrals
In this section we will investigate the computation of complex path integrals. Given two points in the complex plane, connected by
a path  as shown in Figure , we would like to define the integral of  along ,

A natural procedure would be to work in real variables, by writing

since  and .

Figure : We would like to integrate a complex function  over the path  in the complex plane.

In order to carry out the integration, we then have to find a parametrization of the path and use methods from a multivariate
calculus class. Namely, let  and  be continuous in domain , and  a piecewise smooth curve in D. Let  be a
parametrization of  for  and   for . Then

Here we have used

Γ 8.5.1 f(z) Γ

f(z)dz∫
Γ

f(z)dz = [u(x, y) + iv(x, y)](dx+ idy),∫
Γ

∫
Γ

z = x+ iy dz = dx+ idy

8.5.1 f(z) Γ

u v D Γ (x(t), y(t))
Γ ≤ t ≤t0 t1 f(z) = u(x, y) + iv(x, y) z = x+ iy

f(z)dz = [u(x(t), y(t)) + iv(x(t), y(t))]( + i ) dt.∫
Γ

∫
t1

t0

dx

dt

dy

dt
(8.5.1)
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Furthermore, a set  is called a domain if it is both open and connected.

Before continuing, we first define open and connected. A set  is connected if and only if for all , and  in  there exists a
piecewise smooth curve connecting  to  and lying in . Otherwise it is called disconnected. Examples are shown in Figure 

.

Figure :

A set  is open if and only if for all  in  there exists an open disk  in . In Figure  we show a region with
two disks.

Figure : Locations of open disks inside and on the boundary of a region.

For all points on the interior of the region one can find at least one disk contained entirely in the region. The closer one is to the
boundary, the smaller the radii of such disks. However, for a point on the boundary, every such disk would contain points inside

dz = dx+ idy =( + i ) dt.
dx

dt

dy

dt

D

D z1 z2 D

z1 z2 D

8.5.2

8.5.2

D z0 D |z− | < ρz0 D 8.5.3

8.5.3
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and outside the disk. Thus, an open set in the complex plane would not contain any of its boundary points.

We now have a prescription for computing path integrals. Let’s see how this works with a couple of examples.

Evaluate , where  the arc of the unit circle in the first quadrant as shown in Figure .

Figure : Contour for Example .

Solution
There are two ways we could carry out the parametrization. First, we note that the standard parametrization of the unit circle is

For a quarter circle in the first quadrant, , we let . Therefore,  and the
path integral becomes

We can expand the integrand and integrate, having to perform some trigonometric integrations.

The reader should work out these trigonometric integrations and confirm the result. For example, you can use

to write the real part of the integrand as

 Example 8.5.1

dz∫
C
z2 C = 8.5.4

8.5.4 8.5.1

(x(θ), y(θ)) = (cosθ, sinθ), 0 ≤ θ ≤ 2π.

0 ≤ θ ≤ π

2
z = cosθ+ i sinθ dz = (−sinθ+ i cosθ)dθ

dz = (cosθ+ i sinθ (−sinθ+ i cosθ)dθ.∫
C
z2 ∫

π

2

0
)2

[ θ−3 θ sinθ+ i ( θ−3 cosθ θ)] dθ. ∫

π

2

0
sin3 cos2 cos3 sin2

θ = sinθ(1 − θ))sin3 cos2

sinθ−4 θ sinθ. cos2
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The resulting antiderivative becomes

The imaginary integrand can be integrated in a similar fashion.

While this integral is doable, there is a simpler procedure. We first note that  on . The integration
then becomes

Evaluate , for the path  shown in Figure .

Figure : Contour for Example  with .

Solution
In this problem we have a path that is a piecewise smooth curve. We can compute the path integral by computing the values
along the two segments of the path and adding the results. Let the two segments be called  and  as shown in Figure 
and parametrize each path separately.

Over  we note that . Thus,  for . It is natural to take  as the parameter. So, we let  to find

−cosθ+ θ. 
4

3
cos3

z = eiθ C. , dz = i dθS0 eiθ

dz∫
C

z2 = i dθ∫

π

2

0
( )eiθ

2
eiθ

= i dθ∫

π

2

0
e3iθ

=
ie3iθ

3i

∣

∣
∣
π/2

0

= −
1 + i

3
(8.5.2)

 Example 8.5.2

zdz∫Γ Γ = ∪γ1 γ2 8.5.5

8.5.5 8.5.2 Γ = ∪γ1 γ2

γ1 γ2 8.5.5

γ1 y = 0 z = x x ∈ [0, 1] x dz = dx
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For path  we have that  iy for  and . Inserting this parametrization into the integral, the integral
becomes

Combining the results for the paths  and , we have  .

Evaluate , where , is the path shown in Figure .

Figure : Contour for Example .

Solution
In this case we take a path from  to  along a different path than in the last example. Let 

 . Then, .

The integral becomes

zdz = xdx = .∫
γ1

∫
1

0

1

2

γ2 z = 1+ y ∈ [0, 1] dz = idy

zdz = (1 + iy)idy = i− .∫
γ2

∫
1

0

1

2

γ1 γ2 zdz = +(i− ) =∫
Γ

1
2

1
2

i

 Example 8.5.3

zdz∫
γ3

γ3 8.5.6

8.5.6 8.5.3

z = 0 z = 1 + i

= {(x, y) ∣ y = , x ∈ [0, 1]} = {z ∣ z = x+ i , x ∈γ3 x2 x2 [0, 1]} dz = (1 +2ix)dx

zdz∫
γ3

= (x+ i ) (1 +2ix)dx∫
1

0
x2

= (x+3i −2 )dx =∫
1

0
x2 x3

= = i[ + i − ]
1

2
x2 x3 1

2
x4

1

0

(8.5.3)
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In the last case we found the same answer as we had obtained in Example . But we should not take this as a general rule for all
complex path integrals. In fact, it is not true that integrating over different paths always yields the same results. However, when this
is true, then we refer to this property as path independence. In particular, the integral  is path independent if

for all paths from  to  as shown in Figure .

Figure :  for all paths from  to  when the integral of  is path independent. 
A simple closed counter.

We can show that if  is path independent, then the integral of  over all closed loops is zero,

A common notation for integrating over closed loops is . But first we have to define what we mean by a closed loop. A
simple closed contour is a path satisfying

a. The end point is the same as the beginning point. (This makes the loop closed.)
b. The are no self-intersections. (This makes the loop simple.)

A loop in the shape of a figure eight is closed, but it is not simple.

Now, consider an integral over the closed loop  shown in Figure . We pick two points on the loop breaking it into two
contours,  and . Then we make use of the path independence by defining to be the path along  but in the opposite
direction. Then,

Assuming that the integrals from point 1 to point 2 are path independent, then the integrals over  and are equal. Therefore,
we have 

8.5.3

∫ f(z)dz

f(z)dz = f(z)dz∫
Γ1

∫
Γ2

z1 z2 8.5.7

8.5.7 f(z)dz = f(z)dz∫Γ1
∫Γ2

z1 z2 f(z)

∫ f(z)dz f(z)

f(z)dz = 0.∫
closed loops 

f(z)dz∮C

C 8.5.8
C1 C2 C−

2 C2

f(z)dz∮
C

= f(z)dz+ f(z)dz∫
C1

∫
C2

= f(z)dz− f(z)dz∫
C1

∫
C

−
2

(8.5.4)

C1 C−
2

f(z)dz = 0.∮
C
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 if the integral is path independent.

Figure : The integral  around  is zero if the integral  is path independent.

Consider the integral  for  the closed contour shown in Figure  starting at  following path , then  and
returning to . Based on the earlier examples and the fact that going backwards on  introduces a negative sign, we have

Cauchy’s Theorem
Next we want to investigate if we can determine that integrals over simple closed contours vanish without doing all the work of
parametrizing the contour. First, we need to establish the direction about which we traverse the contour. We can define the
orientation of a curve by referring to the normal of the curve.

Recall that the normal is a perpendicular to the curve. There are two such perpendiculars. The above normal points outward and the
other normal points towards the interior of a closed curve. We will define a positively oriented contour as one that is traversed with
the outward normal pointing to the right. As one follows loops, the interior would then be on the left.

A curve with parametrization  has a normal 

We now consider  over a simple closed contour. This can be written in terms of two real integrals in the -plane.

 Note

f(z)dz = 0∮
C

8.5.8 f(z)dz∮
C

C f(z)dz∫Γ

 Example 8.5.4

zdz∮
C

C 8.5.6 z = 0 γ1 γ2

z = 0 γ3

zdz = zdz+ zdz− zdz = +(i− )− i = 0.∮
C

∫
γ1

∫
γ2

∫
γ3

1

2

1

2

 Note

(x(t), y(t)) ( , ) = (− , ) .nx ny
dx

dt

dy

dt

(u+ iv)dz∮
C

xy
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These integrals in the plane can be evaluated using Green’s Theorem in the Plane. Recall this theorem from your last semester of
calculus:

Let  and  be continuously differentiable functions on and inside the simple closed curve  as shown in Figure 
. Denoting the enclosed region S, we have

Figure : Region used in Green’s Theorem.

Green’s Theorem in the Plane is one of the major integral theorems of vector calculus. It was discovered by George Green ( 
 ) and published in 1828, about four years before he entered Cambridge as an undergraduate.

Using Green’s Theorem to rewrite the first integral in , we have

If  and  satisfy the Cauchy-Riemann equations (8.4.6), then the integrand in the double integral vanishes. Therefore,

In a similar fashion, one can show that

(u+ iv)dz∮
C

= (u+ iv)(dx+ idy)∫
C

= udx−vdy+ i vdx+udy.∫
C

∫
C

(8.5.5)

 Theorem : Green's Theorem in the Plane8.5.1

P (x, y) Q(x, y) C
8.5.9

Pdx+Qdy = ( − ) dxdy∫
C

∬
S

∂Q

∂x

∂P

∂y
(8.5.6)

8.5.9

 Note

1793 −1841

(8.5.5)

udx−vdy = ( − ) dxdy∫
C

∬
S

−∂v

∂x

∂u

∂y

u v

udx−vdy = 0.∫
C

vdx+udy = 0.∫
C
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We have thus proven the following theorem:

If  and  satisfy the Cauchy-Riemann equations (8.4.6) inside and on the simple closed contour , then

Corollary  when  is differentiable in domain  with .

Either one of these is referred to as Cauchy’s Theorem.

Evaluate .

Solution
Since  is differentiable inside the circle , this integral vanishes.

We can use Cauchy’s Theorem to show that we can deform one contour into another, perhaps simpler, contour.

One can deform contours into simpler ones.

If  is holomorphic between two simple closed contours,  and , then .

Proof

We consider the two curves  and  as shown in Figure . Connecting the two contours with contours  and  (as
shown in the figure),  is seen to split into contours  and  and  into contours  and . Note that  is
differentiable inside the newly formed regions between the curves. Also, the boundaries of these regions are now simple closed
curves. Therefore, Cauchy’s Theorem tells us that the integrals of  over these regions are zero.

 Theorem : Cauchy's Theorem8.5.2

u v C

(u+ iv)dz = 0.∮
C

(8.5.7)

 Corollary 8.5.1

f(z)dz = 0∮
C

f D C ⊂ D

 Example 8.5.5

dz∮
|z−1|=3

z4

f(z) = z4 |z−1| = 3

 Note

 Theorem 8.5.3

f(z) C C ′ f(z)dz = f(z)dz∮C ∮C ′

C C ′ 8.5.10 Γ1 Γ2

C C1 C2 C ′ C ′
1 C ′

2 f(z)

f(z)
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Figure : The contours needed to prove that  when  is holomorphic between the contours 
and .

Noting that integrations over contours opposite to the positive orientation are the negative of integrals that are positively
oriented, we have from Cauchy’s Theorem that

and

In the first integral we have traversed the contours in the following order:  backwards, and . The second integral
denotes the integration over the lower region, but going backwards over all contours except for .

Combining these results by adding the two equations above, we have

Noting that  and , we have

as was to be proven.

Compute  for  the rectangle .

Solution

8.5.10 f(z)dz = f(z)dz∮
C

∮
C

′ f(z) C

C ′

f(z)dz+ f(z)dz− f(z)dz+ f(z)dz = 0∫
C1

∫
Γ1

∫
C ′

1

∫
Γ2

f(z)dz− f(z)dz− f(z)dz− f(z)dz = 0.∫
C2

∫
Γ2

∫
C ′

2

∫
Γ1

, ,C1 Γ1 C ′
1

Γ2

C2

f(z)dz+ f(z)dz− f(z)dz− f(z)dz = 0.∫
C1

∫
C2

∫
C

′
1

∫
C

′
2

C = +C1 C2 = +C ′ C ′
1 C ′

2

f(z)dz = f(z)dz,∮
C

∮
C ′

 Example 8.5.6

∮
R

dz

z
R [−2, 2] ×[−2i, 2i]
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We can compute this integral by looking at four separate integrals over the sides of the rectangle in the complex plane. One
simply parametrizes each line segment, perform the integration and sum the four separate results. From the last theorem, we
can instead integrate over a simpler contour by deforming the rectangle into a circle as long as  is differentiable in the
region bounded by the rectangle and the circle. So, using the unit circle, as shown in Figure , the integration might be
easier to perform.

Figure : The contours used to compute . Note that to compute the integral around  we can deform the contour to
the circle  since  is differentiable in the region between the contours.

More specifically, the last theorem tells us that

The latter integral can be computed using the parametrization  for  . Thus,

Therefore, we have found that  by deforming the original simple closed contour.

For fun, let’s do this the long way to see how much effort was saved. We will label the contour as shown in Figure . The
lower segment,  of the square can be simple parametrized by noting that along this segment  for .
Then, we have

We note that the arguments of the logarithms are determined from the angles made by the diagonals provided in Figure .

f(z) = 1
z

8.5.11

8.5.11 ∮
R

dz
z

R

C f(z)

=∮
R

dz

z
∮

|z|=1

dz

z

z = eiθ θ ∈ [0, 2π]

∮
|z|=1

dz

z
= ∫

2π

0

i dθeiθ

eiθ

= i dθ = 2πi.∫
2π

0
(8.5.8)

= 2πi∮
R

dz
z

8.5.12
γ4 z = x−2i x ∈ [−2, 2]

∮
γ4

dz

z
= ∫

2

−2

dx

x−2i

= ln|x−2i|2−2

=(ln(2 ) − )−(ln(2 ) − )2
–

√
πi

4
2
–

√
3πi

4

= .
πi

2
(8.5.9)

8.5.12
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Figure : The contours used to compute . The added diagonals are for the reader to easily see the arguments used in
the evaluation of the limits when integrating over the segments of the square .

Similarly, the integral along the top segment, , is computed as

The integral over the right side, , is

Finally, the integral over the left side, , is

8.5.12 ∮
R

az
z

R

z = x+2i, x ∈ [−2, 2]

∮
γ2

dz

z
= ∫

−2

2

dx

x+2i

= ln|x+2i|
−2
2

=(ln(2 ) + )−(ln(2 ) + )2
–√

3πi

4
2
–√

πi

4

= .
πi

2
(8.5.10)

z = 2 + iy, y ∈ [−2, 2]

∮
γ1

dz

z
= ∫

2

−2

idy

2 + iy

= ln|2 + iy|2−2

=(ln(2 ) + )−(ln(2 ) − )2
–

√
πi

4
2
–

√
πi

4

= .
πi

2
(8.5.11)

z = −2 + iy, y ∈ [−2, 2]

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90968?pdf


8.5.13 https://math.libretexts.org/@go/page/90968

Therefore, we have that

This gives the same answer we had found using a simple contour deformation.

The converse of Cauchy’s Theorem is not true, namely  does not always imply that  is differentiable. What we
do have is Morera’s Theorem(Giacinto Morera, 1856-1909):

Theorem 8.6. Let  be continuous in a domain . Suppose that for every simple closed contour  in . Then 
 is differentiable in .

The proof is a bit more detailed than we need to go into here. However, this theorem is useful in the next section.

Analytic Functions and Cauchy’s Integral Formula
In the previous section we saw that Cauchy’s Theorem was useful for computing particular integrals without having to parametrize
the contours or for deforming contours into simpler contours. The integrand needs to possess certain differentiability properties. In
this section, we will generalize the functions that we can integrate slightly so that we can integrate a larger family of complex
functions. This will lead us to the Cauchy’s Integral Formula, which extends Cauchy’s Theorem to functions analytic in an annulus.
However, first we need to explore the concept of analytic functions.

A function  is analytic in domain  if for every open disk  lying in  can be represented as a power series
in . Namely,

This series converges uniformly and absolutely inside the circle of convergence, , with radius of convergence . [See
the Appendix for a review of convergence.]

Since  can be written as a uniformly convergent power series, we can integrate it term by term over any simple closed contour
in  containing . In particular, we have to compute integrals like . As we will see in the homework exercises,
these integrals evaluate to zero for most . Thus, we can show that for  analytic in  and on any closed contour  lying in 

. Also,  is a uniformly convergent sum of continuous functions, so  is also continuous. Thus, by Morera’s
Theorem, we have that  is differentiable if it is analytic. Often terms like analytic, differentiable and holomorphic are used
interchangeably, though there is a subtle distinction due to their definitions.

∮
γ3

dz

z
= ∫

−2

2

idy

−2 + iy

= ln| −2 + iy|
2
−2

=(ln(2 ) + )−(ln(2 ) + )2
–

√
5πi

4
2
–

√
3πi

4

= .
πi

2
(8.5.12)

∮
R

dz

z
= + + +∫

γ1

dz

z
∫
γ2

dz

z
∫
γ3

dz

z
∫
γ4

dz

z

= + + +
πi

2

πi

2

πi

2

πi

2

= 4( ) = 2πi.
πi

2
(8.5.13)

f(z)dz = 0∮
C

f(z)

 Theorem : Moerera's Theorem8.5.4

f D C D, f(z)dz = 0∮C
f D

f(z) D |z− | < ρz0 D, f(z)
z0

f(z) = .∑
n=0

∞

cn (z− )z0
n

|z− | < Rz0 R

f(z)
D z0 dz∮C (z− )z0

n

n f(z) D C

D, f(z)dz = 0∮
C

f f(z)

f(z)
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There are various types of complex-valued functions.

A holomorphic function is (complex) differentiable in a neighborhood of every point in its domain.

An analytic function has a convergent Taylor series expansion in a neighborhood of each point in its domain. We see here that
analytic functions are holomorphic and vice versa.

If  function is holomorphic throughout the complex plane, then it is called an entire function.

Finally, a function which is holomorphic on all of its domain except at a set of isolated poles (to be defined later), then it is
called a meromorphic function.

As examples of series expansions about a given point, we will consider series expansions and regions of convergence for 
.

Find the series expansion of  about .

Solution
This case is simple. From Chapter 1 we recall that  is the sum of a geometric series for . We have

Thus, this series expansion converges inside the unit circle  in the complex plane.

Find the series expansion of  about .

Solution
We now look into an expansion about a different point. We could compute the expansion coefficients using Taylor’s formula
for the coefficients. However, we can also make use of the formula for geometric series after rearranging the function. We seek
an expansion in powers of . So, we rewrite the function in a form that has is a function of . Thus,

This is not quite in the form we need. It would be nice if the denominator were of the form of one plus something. [Note: This
is similar to what we had seen in Example 11.7.7.] We can get the denominator into such a form by factoring out the . Then
we would have

The second factor now has the form , which would be the sum of a geometric series with first term  and ratio 
 provided that . Therefore, we have found that

for

 Note

a

f(z) = 1
1+z

 Example 8.5.7

f(z) = 1
1+z

= 0z0

f(z) |z| < 1

f(z) = = (−z .
1

1 +z
∑
n=0

∞

)n

(|z| < 1)

 Example 8.5.8

f(z) = 1
1+z

=z0
1
2

z− 1
2

z− 1
2

f(z) = = = .
1

1 +z

1

1 +(z− + )1
2

1
2

1

+(z− )3
2

1
2

3
2

f(z) = .
2

3

1

1 + (z− )2
3

1
2

1
1−r

a = 1

r = − (z− )2
3

1
2

|r| < 1

f(z) =
2

3
∑
n=0

∞

[− (z− )]
2

3

1

2

n

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90968?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/01%3A_First_Order_Partial_Differential_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/11%3A_A_-_Calculus_Review_-_What_Do_I_Need_to_Know_From_Calculus%3F/11.07%3A_The_Binomial_Expansion#Example_.5C(.5CPageIndex.7B7.7D.5C)


8.5.15 https://math.libretexts.org/@go/page/90968

This convergence interval can be rewritten as

which is a circle centered at  with radius .

In Figure  we show the regions of convergence for the power series expansions of  about  and . We
note that the first expansion gives that  is at least analytic inside the region . The second expansion shows that  is
analytic in a larger region, . We will see later that there are expansions which converge outside of these regions and
that some yield expansions involving negative powers of .

Figure : Regions of convergence for expansions of  about  and .

We now present the main theorem of this section:

Let  be analytic in  and let  be the boundary (circle) of this disk. Then,

Proof

In order to prove this, we first make use of the analyticity of . We insert the power series expansion of  about  into
the integrand. Then we have

− (z− ) < 1. 
∣

∣
∣

2

3

1

2

∣

∣
∣

z− < ,
∣
∣
∣

1

2
∣
∣
∣

3

2

z = 1
2

3
2

8.5.13 f(z) = 1
1+z

z = 0 z = 1
2

f(z) |z| < 1 f(z)

z− <∣∣
1
2

∣∣
3
2

z−z0

8.5.13 f(z) = 1
1+z

z = 0 z = 1
2

 Theorem : Cauchy Integration Formula8.5.5

f(z) |z− | < ρz0 C

f ( ) = dz.z0
1

2πi
∮
C

f(z)

z−z0
(8.5.14)

f(z) f(z) z0
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As noted the integrand can be written as

where  is an analytic function, since  is representable as a series expansion about . We have already shown that
analytic functions are differentiable, so by Cauchy’s Theorem .

Noting also that  is the first term of a Taylor series expansion about , we have

We need only compute the integral  to finish the proof of Cauchy’s Integral Formula. This is done by parametrizing
the circle, , as shown in Figure . This is simply done by letting

(Note that this has the right complex modulus since . Then  . Using this parametrization, we have

Figure : Circular contour used in proving the Cauchy Integral Formula.

Therefore,

f(z)

z−z0
= [ ]

1

z−z0
∑
n=0

∞

cn (z− )z0
n

= [ + (z− ) + +…]
1

z−z0
c0 c1 z0 c2 (z− )z0

2

= +
c0

z−z0
+ (z− ) +…c1 c2 z0

  
analytic function 

(8.5.15)

= +h(z),
f(z)

z−z0

c0

z−z0

h(z) h(z) z0

h(z)dz = 0∮
C

= f ( )c0 z0 z = z0

dz = [ +h(z)]dz = f ( ) dz.∮
C

f(z)

z−z0
∮
C

c0

z−z0
z0 ∮

C

1

z−z0

dz∮
C

1
z−z0

|z− | = ρz0 8.5.14

z− = ρ .z0 eiθ

= 1∣∣e
iθ ∣∣ dz = iρ dθeiθ

= = i dθ = 2πi.∮
C

dz

z−z0
∫

2π

0

iρ dθeiθ

ρeiθ
∫

2π

0

8.5.14

dz = f ( ) dz = 2πif ( ) ,∮
C

f(z)

z−z0
z0 ∮

C

1

z−z0
z0
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as was to be shown.

Compute .

Solution
In order to apply the Cauchy Integral Formula, we need to factor the denominator, . We next
locate the zeros of the denominator. In Figure  we show the contour and the points  and . The only point
inside the region bounded by the contour is . Therefore, we can apply the Cauchy Integral Formula for  to
the integral

Therefore, we have

Figure : Circular contour used in computing .

We have shown that  has an integral representation for  analytic in . In fact, all derivatives of an analytic
function have an integral representation. This is given by

This can be proven following a derivation similar to that for the Cauchy Integral Formula. Inserting the Taylor series expansion for 
 into the integral on the right hand side, we have

 Example 8.5.9

dz∮
|z|=4

cos z
−6z+5z2

−6z+5 = (z−1)(z−5)z2

8.5.15 z = 1 z = 5
z = 1 f(z) = cos z

z−5

dz = dz = 2πif(1). ∫
|z|=4

cosz

(z−1)(z−5)
∫

|z|=4

f(z)

(z−1)

dz = − . ∫
|z|=4

cosz

(z−1)(z−5)

πi cos(1)

2

8.5.15 dz∮|z|=4
cosz
−6z+5z2

f ( )z0 f(z) |z− | < ρz0

( ) = dz.f (n) z0
n!

2πi
∮
C

f(z)

(z−z0)n+1
(8.5.16)

f(z)
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Picking , the integrals in the sum can be computed by using the following result:

The proof is left for the exercises.

The only nonvanishing integrals, , occur when  0 , or . Therefore, the series of integrals

collapses to one term and we have

We finish the proof by recalling that the coefficients of the Taylor series expansion for  are given by

Then,

and the result follows.

Laurent Series

Until this point we have only talked about series whose terms have nonnegative powers of . It is possible to have series
representations in which there are negative powers. In the last section we investigated expansions of  about  and 

. The regions of convergence for each series was shown in Figure . Let us reconsider each of these expansions, but for
values of  outside the region of convergence previously found.

 for .

Solution
As before, we make use of the geometric series. Since , we instead rewrite the function as

We now have the function in a form of the sum of a geometric series with first term  and ratio . We note that 
 implies that . Thus, we have the geometric series

This can be re-indexed  as

dz∮
C

f(z)

(z− )z0
n+1

= dz∑
m=0

∞

cm ∮
C

(z− )z0
m

(z− )z0
n+1

= ∑
m=0

∞

cm ∮
C

dz

(z− )z0
n−m+1

(8.5.17)

k = n−m

={∮
C

dz

(z− )z0
k+1

0,

2πi,

k ≠ 0

k = 0.
(8.5.18)

∮C
dz

(z− )z0
n−m+1 k = n−m = m = n

dz = 2πi .∮
C

f(z)

(z− )z0
n+1

cn

f(z)

= .cn
( )f (n) z0

n!

dz = ( )∮
C

f(z)

(z− )z0
n+1

2πi

n!
f (n) z0

z−z0

f(z) = 1
1+z

z = 0

z = 1
2

8.5.13

z

 Example 8.5.10

f(z) = 1
1+z

|z| > 1

|z| > 1

f(z) = = .
1

1 +z

1

z

1

1 + 1
z

a = 1 r = − 1
2

|z| > 1 |r| < 1

f(z) = .
1

z
∑
n=0

∞

(− )
1

z

n

1

f(z) = (−1 = (−1 .∑
n=0

∞

)nz−n−1 ∑
j=1

∞

)j−1z−j
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Note that this series, which converges outside the unit circle, , has negative powers of .

Re-indexing a series is often useful in the geometric series series manipulations. In this case, we have the series

The index is . You can see that the index does not appear when the sum is expanded showing the terms. The summation index
is sometimes refered to as a dummy index for this reason. Reindexing allows one to rewrite the shorthand summation notation
while capturing the same terms. In this example, the exponents are . We can simplify the notation by letting 

, or . Noting that  when , we get the sum .

 for .

Solution
As before, we express this in a form in which we can use a geometric series expansion. We seek powers of . So, we add
and subtract  to the  to obtain:

Instead of factoring out the  as we had done in Example , we factor out the  term. Then, we obtain

Now we identify  and . This leads to the series

This converges for  and can also be re-indexed to verify that this series involves negative powers of .

This leads to the following theorem:

Let  be analytic in an annulus, , with  a positively oriented simple closed curve around  and
inside the annulus as shown in Figure . Then,

with

|z| > 1 z

 Note

(−1 = − + +…∑
n=0

∞

)nz−n−1 z−1 z−2 z−3

n

−n−1
−n−1 = −j j= n+1 j= 1 n = 0 (−1∑∞

j=1 )j−1z−j

 Example 8.5.11

f(z) = 1
1+z

z− >∣∣
1
2

∣∣
3
2

z− 1
2

1
2

z

f(z) = = = .
1

1 +z

1

1 +(z− + )1
2

1
2

1

+(z− )3
2

1
2

3
2

8.5.8 (z− )1
2

f(z) = = .
1

1 +z

1

(z− )1
2

1

[1 + ]3
2
(z− )1

2

−1

a = 1 r = − 3
2
(z− )1

2

−1

f(z) =
1

z− 1
2

∑
n=0

∞

(− )
3

2
(z− )

1

2

−1 n

= .∑
n=0

∞

(− )
3

2

n

(z− )
1

2

−n−1

(8.5.19)

z− >∣∣
1
2

∣∣
3
2

z− 1
2

 Theorem 8.5.6

f(z) < |z− | <R1 z0 R2 C z0

8.5.16

f(z) = + ,∑
j=0

∞

aj (z− )z0
j ∑

j=1

∞

bj (z− )z0
−j

= dz,aj
1

2πi
∮
C

f(z)

(z− )z0
j+1
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and

Figure : This figure shows an annulus, , with  a positively oriented simple closed curve around 
 and inside the annulus.

The above series can be written in the more compact form

Such a series expansion is called a Laurent series expansion named after its discoverer Pierre Alphonse Laurent (1813-1854).

Expand  in the annulus .

Solution
Using partial fractions, we can write this as

We can expand the first fraction, , as an analytic function in the region  and the second fraction, , as an analytic
function in . This is done as follows. First, we write

= dz.bj
1

2πi
∮
C

f(z)

(z− )z0
−j+1

8.5.16 < |z − | <R1 z0 R2 C

z0

f(z) = .∑
j=−∞

∞

cj (z− )z0
j

 Example 8.5.12

f(z) = 1
(1−z)(2+z)
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f(z) = [ + ] .
1
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1

1 −z

1

2 +z
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1
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Then, we write

Therefore, in the common region, , we have that

We note that this is not a Taylor series expansion due to the existence of terms with negative powers in the second sum.

Find series representations of  throughout the complex plane.

Solution
In the last example we found series representations of  in the annulus . However, we can also

find expansions which converge for other regions. We first write

We then expand each term separately.

The first fraction, , can be written as the sum of the geometric series

This series converges inside the unit circle. We indicate this by region 1 in Figure .

= − = − .
1

1 −z

1

z [1 − ]1
z

1

z
∑
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∞ 1
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1
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1
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1

2
∑
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∞
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z

2

n

∑
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∞ 1

zn+1

= +∑
n=0
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6 ( )2n
zn ∑
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∞ (−1)

3
z−n (8.5.20)

 Example 8.5.13

f(z) = 1
(1−z)(2+z)

f(z) = 1
(1−z)(2+z)

1 < |z| < 2

f(z) = [ + ] .
1

3

1

1 −z

1

2 +z

1
1−z

= , |z| < 1.
1

1 −z
∑
n=0

∞

zn

8.5.17
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Figure : Regions of convergence for Laurent expansions of .

In the last example, we showed that the second fraction, , has the series expansion

which converges in the circle . This is labeled as region 2 in Figure .

Regions 1 and 2 intersect for , so, we can combine these two series representations to obtain

In the annulus, , we had already seen in the last example that we needed a
different expansion for the fraction . We looked for an expansion in powers of 
which would converge for large values of . We had found that

This series converges in region 3 in Figure . Combining this series with the one for the second fraction, we obtain a
series representation that converges in the overlap of regions 2 and 3 . Thus, in the annulus  we have

8.5.17 f(z) = 1
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So far, we have series representations for . The only region not covered yet is outside this disk, . In in Figure 
 we see that series 3, which converges in region 3, will converge in the last section of the complex plane. We just need

one more series expansion for  for large . Factoring out a  in the denominator, we can write this as a geometric
series with ,

This series converges for . Therefore, it converges in region 4 and the final series representation is

Singularities and The Residue Theorem
In the last section we found that we could integrate functions satisfying some analyticity properties along contours without using
detailed parametrizations around the contours. We can deform contours if the function is analytic in the region between the original
and new contour. In this section we will extend our tools for performing contour integrals.

The integrand in the Cauchy Integral Formula was of the form  , where  is well behaved at . The point  is
called a singularity of , as  is not defined there. More specifically, a singularity of  is a point at which  fails to be
analytic.

We can also classify these singularities. Typically these are isolated singularities. As we saw from the proof of the Cauchy Integral

Formula,  has a Laurent series expansion about , given by

It is the nature of the first term that gives information about the type of singularity that  has. Namely, in order to classify the
singularities of , we look at the principal part of the Laurent series of  about , , which consists
of the negative powers of .

There are three types of singularities, removable, poles, and essential singularities. They are defined as follows:

1. If  is bounded near , then  is a removable singularity.
2. If there are a finite number of terms in the principal part of the Laurent series of  about , then  is called a pole.
3. If there are an infinite number of terms in the principal part of the Laurent series of  about , then  is called an

essential singularity.

 has a removable singularity at .

Solution
At first it looks like there is a possible singularity at , since the denominator is zero at . However, we know from
the first semester of calculus that . Furthermore, we can expand  about  and see that

Thus, there are only nonnegative powers in the series expansion. So,  is a removable singularity.

|z| < 2 |z| > 2
8.5.17

1/(2 +z) z z
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= = .
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∞
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= [ − ] .
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z
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∞
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z

n

∑
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∞ 1

zn+1

g(z) =
f(z)

z−z0
f(z) z0 z = z0

g(z) g(z) f(z) f(z)

g(z) =
f(z)
z−z0

z = z0

g(z) = + ( ) + ( ) (z− ) +…
f ( )z0

z−z0
f ′ z0

1

2
f ′′ z0 z0

g(z)

f(z) f(z) z = z0 ∑∞
j−1 bj(z− )z0

−j

z−z0

f(z) z0 z0

f(z) z = z0 z0

f(z) z = z0 z0

 Example 8.5.14

f(z) = sin z
z z = 0

z = 0 z = 0

= 1limz→0
sin z
z sinz z = 0

= (z− +…) = 1 − +…
sinz

z

1

z

z3

3!

z2

3!

z = 0
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 has poles at  for  a positive integer.

Solution

For  we have . This function has a singularity at . The series expansion is found by expanding  about
 :

Note that the principal part of the Laurent series expansion about  only has one term, . Therefore,  is a pole.
Since the leading term has an exponent of  is called a pole of order one, or a simple pole.

For  we have . The series expansion is found again by expanding  about  :

Note that the principal part of the Laurent series has two terms involving  and . Since the leading term has
an exponent of  is called a pole of order 2, or a double pole.

 has an essential singularity at .

Solution
In this case we have the series expansion about  given by

We see that there are an infinite number of terms in the principal part of the Laurent series. So, this function has an essential
singularity at .

In the above examples we have seen poles of order one (a simple pole) and two (a double pole). In general, we can say that 
has a pole of order  at  if and only if  has a removable singularity at , but  for  does not.

Determine the order of the pole of  at .

Solution
First we rewrite  in terms of sines and cosines.

We note that the denominator vanishes at .

How do we know that the pole is not a simple pole? Well, we check to see if  has a removable singularity at 
:

 Example 8.5.15

f(z) = e2

(z−1)
n z = 1 n

n = 1 f(z) = ez

z−1
z = 1 ez

z = 1

f(z) = = +e+ (z−1) +… .
e

z−1
ez−1 e

z−1

e

2!

z = 1 e

z−1
z = 1

−1, z = 1

n = 2 f(z) = ez

(z−1)2
ez z = 1

f(z) = = + + + (z−1) +… .
e

(z−1)2
ez−1 e

(z−1)2

e

z−1

e

2!

e

3!

(z−1)−2 (z−1)−1

−2, z = 1

 Example 8.5.16

f(z) = e
1
2 z = 0

z = 0

f(z) = = = .e
1
2 ∑
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∞ ( )1
z

n
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∑
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∞ 1
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z−n

z = 0

f(z)

k z0 f(z)(z− )z0
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k > 0

 Example 8.5.17

f(z) = cotz csc z z = 0

f(z)

f(z) = cotz csc z = .
cosz

zsin2

z = 0

(z−0)f(z) z = 0
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We see that this limit is undefined. So, now we check to see if  has a removable singularity at  :

In this case, we have obtained a finite, nonzero, result.  is a pole of order 2 .

We could have also relied on series expansions. Expanding both the sine and cosine functions in a Taylor series expansion, we
have

Factoring a  from the expansion in the denominator,

we can see that the leading term will be a , indicating a pole of order 2.

Integral of a function with a simple pole inside .

Residues of a function with poles of order .

We will see how knowledge of the poles of a function can aid in the computation of contour integrals. We now show that if a
function, , has a pole of order , then

where we have defined  as the residue of  at . In particular, for a pole of order  the residue is given by

Proof

Let  be an analytic function. Then  has a Taylor series expansion about . As we had seen in the
last section, we can write the integral representation of any derivative of  as

Inserting the definition of , we then have

(z−0)f(z)lim
z→0

= lim
z→0

z cosz

zsin2

= ( )( )lim
z→0

z

sinz
lim
z→0

cosz

sinz

= .lim
z→0

cosz

sinz
(8.5.21)

(z−0 f(z))2 z = 0

(z−0 f(z)lim
z→0

)2 = lim
z→0

coszz2

zsin2

= ( )( )lim
z→0

z

sinz
lim
z→0

z cosz

sinz

= cos(0) = 1.lim
z→0

z

sinz
(8.5.22)

, z = 0S0
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zsin2
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C

k

f(z) k

f(z)dz = 2πiRes[f(z); ]∮
C

z0

Res[f(z); ]z0 f(z) z = z0 k

 Residues - Poles of order k

Res[f(z); ] = [ f(z)] .z0 lim
z→z0

1

(k−1)!

dk−1

dzk−1
(z− )z0

k (8.5.23)

ϕ(z) = f(z)(z− )z0
k ϕ(z) z0

ϕ

( ) = dz.ϕ(k−1) z0
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Solving for the integral, we have the result

If  is a simple pole, the residue is easily computed as

In fact, one can show (Problem 18) that for  and  analytic functions at , with , and ,

Find the residues of .

Solution
 has poles at  i, and  i. The pole at  is a double pole (pole of order 2). The other poles are

simple poles. We compute those residues first:

For the double pole, we have to do a little more work.

( ) = f(z)dz.ϕ(k−1) z0
(k−1)!

2πi
∮
C

f(z)dz∮
C

=
2πi

(k−1)!

dk−1

dzk−1
[ f(z)](z− )z0

k

z=z0

≡ 2πiRes[f(z); ]z0 (8.5.24)

 Note

z0

Res[f(z); ] = (z− )f(z)z0 lim
z→z0

z0

g h z0 g ( ) ≠ 0,h ( ) = 0z0 z0 ( ) ≠ 0h′ z0

Res[ ; ] =
g(z)

h(z)
z0

g ( )z0

( )h′ z0

 Example 8.5.18

f(z) = z−1

(z+1 ( +4))2 z2

f(z) z = −1, z = 2 z = −2 z = −1

Res[f(z); 2i]

Res[f(z); −2i]

= (z−2i)lim
z→2i

z−1

(z+1 (z+2i)(z−2i))2
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z−1

(z+1 (z+2i))2

= = − − i.
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(2i+1 (4i))2

1

50
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= (z+2i)lim
z→−2i

z−1

(z+1 (z+2i)(z−2i))2
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= = − + i.
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Find the residue of  at .

Solution
We write  and note that  is a simple pole. Thus,

Another way to find the residue of a function  at a singularity  is to look at the Laurent series expansion about the
singularity. This is because the residue of  at  is the coefficient of the  term, or .

The residue of  at  is the coefficient of the  term, , of the Laurent series expansion about .

Find the residue of  at  using a Laurent series expansion.

Solution
First, we need the Laurent series expansion about  of the form . A partial fraction expansion gives

The first term is a power of . The second term needs to be written as a convergent series for small . This is given by

Thus, we have found

The coefficient of  can be read off to give .

Res[f(z); −1] = [(z+1 ]lim
z→−1

d

dz
)2 z−1

(z+1 ( +4))2 z2

= [ ]lim
z→−1

d

dz

z−1

+4z2

= [ ]lim
z→−1

d

dz

+4 −2z(z−1)z2

( +4)z2 2

= [ ]lim
z→−1

d

dz

− +2z+4z2

( +4)z2 2

=
1

25
(8.5.27)

 Example 8.5.19

f(z) = cotz z = 0

f(z) = cotz = cos z
sin z

z = 0

Res[cotz; z = 0] = = cos(0) = 1. lim
z→0

z cosz

sinz

f(z) z0

f(z) z0 (z− )z0
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=c−1 b1

 Note

f(z) z0 (z−z0)−1 =c−1 b1 z0

 Example 8.5.20
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1
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z z
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Find the residue of  at  using a Laurent series expansion.

Solution
In this case  is an essential singularity. The only way to find residues at essential singularities is to use Laurent series.
Since

then we have

From the second term we have that .

We are now ready to use residues in order to evaluate integrals.

Evaluate .

Solution
We begin by looking for the singularities of the integrand. These are located at values of  for which . Thus, 

, are the singularities. However, only  lies inside the contour, as shown in Figure . We note
further that  is a simple pole, since

Therefore, the residue is one and we have

 Example 8.5.21

f(z) = z cos 1
z z = 0

z = 0

cosz = 1 − + − +… ,
1

2!
z2 1

4!
z4 1

6!
z6

f(z) = z(1 − + − +…)
1

2!z2

1

4!z4

1

6!z6

= z− + − +…
1

2!z

1

4!z3

1

6!z5
(8.5.29)

Res[f(z); z = 0] = − 1
2

 Example 8.5.22

∮
|z|=1

dz
sin z

z sinz = 0
z = 0, ±π, ±2π, … z = 0 8.5.18

z = 0

(z−0) = 1.lim
z→0

1

sinz

= 2πi.∮
|z|=1

dz

sinz
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Figure : Contour for computing 

In general, we could have several poles of different orders. For example, we will be computing

The integrand has singularities at , or . Both poles are inside the contour, as seen in Figure . One could do
a partial fraction decomposition and have two integrals with one pole each integral. Then, the result could be found by adding the
residues from each pole.

In general, when there are several poles, we can use the Residue Theorem.

8.5.18 .∮|z|=1
dz

sin z

.∮
|z|=2

dz

−1z2

−1 = 0z2 z = ±1 8.5.20
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Figure : A depiction of how one cuts out poles to prove that the integral around  is the sum of the integrals around circles
with the poles at the center of each.

Let  be a function which has poles  inside a simple closed contour  and no other singularities in this
region. Then,

where the residues are computed using Equation ,

8.5.19 C

 Theorem : The Residue Theorem8.5.7

f(z) , j= 1, … ,Nzj C

f(z)dz = 2πi Res[f(z); ],∮
C

∑
j=1

N

zj (8.5.30)

(8.5.23)

Res[f(z); ] = [ f(z)] .z0 lim
z→z0

1

(k−1)!

dk−1

dzk−1
(z− )z0

k
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Figure : Contour for computing 

The proof of this theorem is based upon the contours shown in Figure . One constructs a new contour  by encircling each
pole, as show in the figure. Then one connects a path from  to each circle. In the figure two separated paths along the cut are
shown only to indicate the direction followed on the cut. The new contour is then obtained by following  and crossing each cut as
it is encountered. Then one goes around a circle in the negative sense and returns along the cut to proceed around . The sum of
the contributions to the contour integration involve two integrals for each cut, which will cancel due to the opposing directions.
Thus, we are left with

Of course, the sum is zero because  is analytic in the enclosed region, since all singularities have been cut out. Solving for 
, one has that this integral is the sum of the integrals around the separate poles, which can be evaluated with single

residue computations. Thus, the result is that  is  times the sum of the residues.

Evaluate .

Solution
We first note that there are two poles in this integral since

In Figure  we plot the contour and the two poles, denoted by an "x." Since both poles are inside the contour, we need to
compute the residues for each one. They are each simple poles, so we have

8.5.20 .∮|z|=2
dz

−1z2

8.5.19 C ′

C

C

C

f(z)dz = f(z)dz− f(z)dz− f(z)dz− f(z)dz = 0.∮
C ′

∮
C

∮
C1

∮
C2

∮
C3

f(z)
f(z)dz∮

C

f(z)dz∮C 2πi

 Example 8.5.23

∮|z|=2
dz

−1z2

= . 
1

−1z2

1

(z−1)(z+1)

8.5.20
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and

Then,

Evaluate .

Solution
In this example there are two poles  inside the contour. [See Figure .]  is a second order pole and 

 is a simple pole. Therefore, we need to compute the residues at each pole of  :

Res[ ; z = 1]
1

−1z2
= (z−1)lim

z→1

1

−1z2

= = ,lim
z→1

1

z+1

1

2
(8.5.31)

Res[ ; z = −1]
1

−1z2
= (z+1)lim

z→−1

1

−1z2

= = −lim
z→−1

1

z−1

1

2
(8.5.32)

= 2πi( − ) = 0.∮
|z|=2

dz

−1z2

1

2

1

2

 Example 8.5.24

dz∮
|z|=3

+1z2

(z−1 (z+2))2

z = 1, −2 8.5.21 z = 1

z = −2 f(z) = +1z2

(z−1 (z+2))
2

Res[f(z); z = 1]

Res[f(z); z = −2]

= [(z−1 ]lim
z→1

1

1!

d

dz
)2 +1z2

(z−1 (z+2))2

= ( )lim
z→1

+4z−1z2

(z+2)2

= .
4

9

= (z+2)lim
z→−2

+1z2

(z−1 (z+2))2

= lim
z→−2

+1z2

(z−1)2

= .
5

9

(8.5.33)

(8.5.34)
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Figure : Contour for computing .

The evaluation of the integral is found by computing  times the sum of the residues:

Compute .

Solution
In this case,  is an essential singularity and is inside the contour. A Laurent series expansion about  gives

The residue is the coefficient of , or . Therefore,

Evaluate .

8.5.21 dz∮|z|=3
+1z2

(z−1 (z+2))2

2πi

dz = 2πi( + ) = 2πi. ∮
|z|=3

+1z2

(z−1 (z+2))2

4

9

5

9

 Example 8.5.25

dz∮
|z|=2

z3e2/z

z = 0 z = 0

z3e2/z = z3 ∑
n=0

∞ 1

n!
( )

2

z

n

=∑
n=0

∞ 2n

n!
z3−n

= + + z+ + +…z3 2

2!
z2 4

3!

8

4!

16

5!z
(8.5.35)

z−1 Res[ ; z = 0] = −z3e2/z 2
15

dz = πi.∮
|z|=2

z3e2/z 4

15

 Example 8.5.26

∫ 2π
0

dθ

2+cos θ
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Solution
Here we have a real integral in which there are no signs of complex functions. In fact, we could apply simpler methods from a
calculus course to do this integral, attempting to write . However, we do not get very far.

One trick, useful in computing integrals whose integrand is in the form , is to transform the integration to the
complex plane through the transformation . Then,

Computation of integrals of functions of sines and cosines, .

Under this transformation, , the integration now takes place around the unit circle in the complex plane. Noting that 
, we have

We can apply the Residue Theorem to the resulting integral. The singularities occur at the roots of . Using the
quadratic formula, we have the roots .

The location of these poles are shown in Figure . Only  lies inside the integration contour. We will
therefore need the residue of  at this simple pole:

Therefore, we have

1 +cosθ = 2 cos2 θ

2

f(cosθ, sinθ)
z = eiθ

cosθ = = (z+ ) ,
+eiθ e−iθ

2

1

2

1

z

sinθ = = − (z− ) .
−eiθ e−iθ

2i

i

2

1

z

 Note

f(cosθ, sinθ)

z = eiθ

dz = i dθ = izdθeiθ

∫
2π

0

dθ

2 +cosθ
= ∮

|z|=1

dz

iz

2 + (z+ )1
2

1
z

= −i ∮
|z|=1

dz

2z+ ( +1)1
2
z2

= −2i .∮
|z|=1

dz

+4z+1z2
(8.5.36)

+4z+1 = 0z2

z = −2 ± 3
–

√

8.5.22 z = −2 + 3
–

√

f(z) = −2i
+4z+1z2

Res[f(z); z = −2 + ]3
–

√ = (z−(−2 + ))lim
z→−2+ 3√

3
–

√
−2i

+4z+1z2

= −2i lim
z→−2+ 3√

z−(−2 + )3
–

√

(z−(−2 + ))(z−(−2 − ))3
–

√ 3
–

√

= −2i lim
z→−2+ 3√

1

z−(−2 − )3
–

√

=
−2i

−2 + −(−2 − )3
–

√ 3
–

√

=
−i

3
–

√

= .
−i 3

–
√

3
(8.5.37)

= −2i = 2πi( ) = .∫
2π

0

dθ

2 +cosθ
∮

|z|=1

dz

+4z+1z2

−i 3
–

√

3

2π 3
–

√

3
(8.5.38)
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Figure : Contour for computing .

Before moving on to further applications, we note that there is another way to compute the integral in the last example. Karl
Theodor Wilhelm Weierstraß (1815-1897) introduced a substitution method for computing integrals involving rational functions of
sine and cosine. One makes the substitution  and converts the integrand into a rational function of . One can show that
this substitution implies that

and

The details are left for Problem 8 and apply the method. In order to see how it works, we will redo the last problem.

Apply the Weierstraj substitution method to compute .

Solution

Infinite Integrals
Infinite integrals of the Form  occur often in physics. They can represent wave packets, wave diffraction, Fourier
transforms, and arise in other applications. In this section we will see that such integrals may be computed by extending the
integration to a contour in the complex plane.

Recall from your calculus experience that these integrals are improper integrals and the way that one determines if improper
integrals exist, or converge, is to carefully compute these integrals using limits such as

8.5.22 ∫
2π

0
dθ

2+cosθ

t = tan θ
2

t

sinθ = , cosθ = ,
2t

1 + t2

1 − t2

1 + t2

dθ = .
2dt

1 + t2

 Example 8.5.27

∫ 2π
0

dθ

2+cos θ

∫
2π

0

dθ

2 +cosθ
= ∫

∞

−∞

1

2 +
1−t2

1+t2

2dt

1 + t2

= 2 ∫
∞

−∞

dt

+3t2

= = .
2

3
3
–

√ [ ( t)]tan−1 3
–

√

3

∞

−∞

2π 3
–

√

3
(8.5.39)

f(x)dx∫ ∞
−∞

f(x)dx = f(x)dx.∫
∞

−∞
lim
R→∞

∫
R

−R
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For example, we evaluate the integral of  as

One might also be tempted to carry out this integration by splitting the integration interval, . However, the
integrals  and  do not exist. A simple computation confirms this.

Therefore,

does not exist while  does exist. We will be interested in computing the latter type of integral. Such an
integral is called the Cauchy Principal Value Integral and is denoted with either a , or a bar through the integral:

If there is a discontinuity in the integral, one can further modify this definition of principal value integral to bypass the singularity.
For example, if  is continuous on  and not defined at , then

In our discussions we will be computing integrals over the real line in the Cauchy principal value sense.

Compute  in the Cauchy Principal Value sense.

Solution

In this case,  is not defined at . So, we have

Computation of real integrals by embedding the problem in the complex plane.

We now proceed to the evaluation of principal value integrals using complex integration methods. We want to evaluate the integral 
. We will extend this into an integration in the complex plane. We extend  to  and assume that  is

analytic in the upper half plane  except at isolated poles. We then consider the integral  as an integral over
the interval . We view this interval as a piece of a larger contour  obtained by completing the contour with a semicircle 

 of radius  extending into the upper half plane as shown in Figure . Note, a similar construction is sometimes needed
extending the integration into the lower half plane  as we will later see.

f(x) = x

xdx = xdx = ( − ) = 0.∫
∞

−∞
lim
R→∞

∫
R

−R

lim
R→∞

R2

2

(−R)2

2

(−∞, 0] ∪ [0, ∞)

xdx∫ ∞
0

xdx∫ 0
−∞

xdx = xdx = ( ) = ∞.∫
∞

0
lim
R→∞

∫
R

0
lim
R→∞

R2

2

f(x)dx = f(x)dx+ f(x)dx∫
∞

−∞
∫

0

−∞
∫

∞

0

f(x)dxlimR→∞ ∫ R

−R

P ,PV

P f(x)dx = PV f(x)dx = f(x)dx = f(x)dx.∫
∞

−∞
∫

∞

−∞
f∞

−∞ lim
R→∞

∫
R

−R

(8.5.40)

f(x) a ≤ x ≤ b x = ∈ [a, b]x0

f(x)dx = ( f(x)dx+ f(x)dx) .∫
b

a

lim
ϵ→0

∫
−ϵx0

a

∫
b

+ϵx0

 Example 8.5.28

∫
1

−1
dx

x3

f(x) = 1
x3 x = 0

∫
1

−1

dx

x3
= ( + )lim

ϵ→0
∫

−ϵ

−1

dx

x3
∫

1

ϵ

dx

x3

= (− − ) = 0.lim
ϵ→0

1

2x2

∣
∣
∣
−ϵ

−1

1

2x2

∣
∣
∣
1

ϵ

(8.5.41)

 Note

f(x)dx∫ ∞
−∞ f(x) f(z) f(z)

(Im(z) > 0) f(x)dx∫ R

−R

(−R,R) CR

ΓR R 8.5.23
(Im(z) < 0)
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Figure : Contours for computing 

The integral around the entire contour  can be computed using the Residue Theorem and is related to integrations over the
pieces of the contour by

Taking the limit  and noting that the integral over  is the desired integral, we have

where we have identified  as the limiting contour as  gets large.

Now the key to carrying out the integration is that the second integral vanishes in the limit. This is true if  along  as
. This can be seen by the following argument. We parametrize the contour  using . Then, when 

,

So, if , then .

We now demonstrate how to use complex integration methods in evaluating integrals over real valued functions.

8.5.23 P f(x)dx.∫
∞

−∞

CR

f(z)dz = f(z)dz+ f(z)dz.∮
CR

∫
ΓR

∫
R

−R

(8.5.42)

R → ∞ (−R,R)

P f(x)dx = f(z)dz− f(z)dz,∫
∞

−∞
∮
C

lim
R→∞

∫
ΓR

(8.5.43)

C R

R|f(z)| → 0 ΓR

R → ∞ ΓR z = Reiθ

|f(z)| < M(R)

f(z)dz
∣

∣
∣∫

ΓR

∣

∣
∣ = f (R )R dθ

∣

∣
∣∫

2π

0
eiθ eiθ

∣

∣
∣

≤ R f (R ) dθ∫
2π

0

∣∣ eiθ ∣∣

< RM(R) dθ∫
2π

0

= 2πRM(R). (8.5.44)

RM(R) = 0limR→∞ f(z)dz = 0limR→∞ ∫ΓR
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Evaluate .

Solution
We already know how to do this integral using calculus without complex analysis. We have that

We will apply the methods of this section and confirm this result. The needed contours are shown in Figure  and the
poles of the integrand are at . We first write the integral over the bounded contour  as the sum of an integral from 

 to  along the real axis plus the integral over the semicircular arc in the upper half complex plane,

Next, we let  get large.

Figure : Contour for computing .

We first note that  goes to zero fast enough on  as  gets large.

Thus, as  and  C. So,

We need only compute the residue at the enclosed pole, .

 Example 8.5.29

∫ ∞
−∞

dx

1+x2

= (2 R) = 2( )= π.∫
∞

−∞

dx

1 +x2
lim
R→∞

tan−1 π

2

8.5.24
z = ±i CR

−R R

= + .∫
CR

dz

1 +z2
∫

R

−R

dx

1 +x2
∫

ΓR

dz

1 +z2

R

8.5.24 P dx∫ ∞
−∞

sinx
x

f(z) = 1
1+z2 ΓR R

R|f(z)| = = .
R

∣1 +R2e2iθ∣

R

1 +2 cosθ+R2 R4
− −−−−−−−−−−−−−−

√

R → ∞,R|f(z)| → 0 →CR

= .∫
∞

−∞

dx

1 +x2
∮
C

dz

1 +z2

z = i
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Then, using the Residue Theorem, we have

Evaluate .

Solution
For this example the integral is unbounded at . Constructing the contours as before we are faced for the first time with a
pole lying on the contour. We cannot ignore this fact. We can proceed with the computation by carefully going around the pole
with a small semicircle of radius , as shown in Figure . Then the principal value integral computation becomes

Figure : Contour for computing .

We will also need to rewrite the sine function in term of exponentials in this integral. There are two approaches that we could
take. First, we could employ the definition of the sine function in terms of complex exponentials. This gives two integrals to
compute:

The other approach would be to realize that the sine function is the imaginary part of an exponential, . Then, we
would have

We first consider , which is common to both approaches. We use the contour in Figure . Then we have

Res[f(z); z = i] = (z− i) = = . lim
z→i

1

1 +z2
lim
z→i

1

z+ i

1

2i

= 2πi( ) = π.∫
∞

−∞

dx

1 +x2

1

2i

 Example 8.5.30

P dx∫ ∞
−∞

sin x
x

z = 0

ϵ 8.5.25

P dx = ( dx+ dx) .∫
∞

−∞

sinx

x
lim

ϵ→0,R→∞
∫

−ϵ

−R

sinx

x
∫

R

ϵ

sinx

x
(8.5.45)

8.5.25 P dx∫ ∞
−∞

sinx
x

P dx = (P dx−P dx) .∫
∞

−∞

sinx

x

1

2i
∫

∞

−∞

eix

x
∫

∞

−∞

e−ix

x
(8.5.46)

Im = sinxeix

P dx = Im(P dx).∫
∞

−∞

sinx

x
∫

∞

−∞

eix

x
(8.5.47)

P dx∫ ∞
−∞

eix

x
8.5.25

dz = dz+ dz+ dz+ dz.∮
CR

eiz

z
∫

ΓR

eiz

z
∫

−ϵ

−R

eiz

z
∫

Cϵ

eiz

z
∫

R

ϵ

eiz

z
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The integral  vanishes since there are no poles enclosed in the contour! The sum of the second and fourth integrals
gives the integral we seek as  and . The integral over  will vanish as  gets large according to Jordan’s
Lemma.

Jordan’s Lemma give conditions as when integrals over  will vanish as  gets large. We state a version of Jordan’s Lemma
here for reference and give a proof is at the end of this chapter.

If  converges uniformly to zero as , then

where  and  is the upper half of the circle 

A similar result applies for , but one closes the contour in the lower half plane. [See Section 8.5.8 for the proof of
Jordan’s Lemma.]

The remaining integral around the small semicircular arc has to be done separately. We have

Taking the limit as  goes to zero, the integrand goes to  and we have

So far, we have that

At this point we can get the answer using the second approach in Equation . Namely,

It is instructive to carry out the first approach in Equation . We will need to compute . This is done in a
similar to the above computation, being careful with the sign changes due to the orientations of the contours as shown in Figure

.

dz∮
CR

eiz

z

ϵ → 0 R → ∞ ΓR R

ΓR R

 Lemma : Jordan's Lemma8.5.1

f(z) z → ∞

f(z) dz = 0lim
R→∞

∫
CR

eikz

k > 0 CR |z| = R.

k < 0

dz = iϵ dθ = − i exp(iϵ )dθ∫
Cϵ

eiz

z
∫

0

π

exp(iϵ )eiθ

ϵeiθ
eiθ ∫

π

0
eiθ

ϵ i

dz = −πi.∫
Cϵ

eiz

z

P dx = − dz = πi.∫
∞

−∞

eix

x
lim
ϵ→0

∫
Cϵ

eiz

z

(8.5.47)

P dx = Im(P dx) = Im(πi) = π∫
∞

−∞

sinx

x
∫

∞

−∞

eix

x
(8.5.48)

(8.5.46) P dx∫ ∞
−∞

e−ix

x

8.5.26
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Figure : Contour in the lower half plane for computing .

We note that the contour is closed in the lower half plane. This is because  in the application of Jordan’s Lemma. One
can understand why this is the case from the following observation. Consider the exponential in Jordan’s Lemma. Let 

. Then,

As  gets large, the second factor just oscillates. The first factor would go to zero if . So, if , we would close
the contour in the upper half plane. If , then we would close the contour in the lower half plane. In the current
computation, , so we use the lower half plane.

Working out the details, we find the same value for

Finally, we can compute the original integral as

This is the same result as we obtained using Equation .

Note that we have not previously done integrals in which a singularity lies on the contour. One can show, as in this example,
that points on the contour can be accounted for by using half of a residue (times  ). For the semicircle  you can verify
this. The negative sign comes from going clockwise around the semicircle.

Evaluate .

8.5.26 P dx∫ ∞
−∞

e−ix

x

k < 0

z = + izR zI

= = .eikz eik( +i )zR zl e−kzI eikzR

|z| k > 0zI k > 0
k < 0

k = −1

P dx = πi.∫
∞

−∞

e−ix

x

P dx∫
∞

−∞

sinx

x
= (P dx−P dx)

1

2i
∫

∞

−∞

eix

x
∫

∞

−∞

e−ix

x

= (πi+πi)
1

2i
= π (8.5.49)

(8.5.47)

 Note

2πi Ce

 Example 8.5.31

∮
|z|=1

dz

+1z2
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Solution
In this example there are two simple poles,  lying on the contour, as seen in Figure . This problem is similar to
Problem 1c, except we will do it using contour integration instead of a parametrization. We bypass the two poles by drawing
small semicircles around them. Since the poles are not included in the closed contour, then the Residue Theorem tells us that
the integral over the path vanishes. We can write the full integration as a sum over three paths, for the semicircles and  for
the original contour with the poles cut out. Then we take the limit as the semicircle radii go to zero. So,

Figure : Example with poles on contour.

The integral over the semicircle around i can be done using the parametrization . Then .
This gives

As in the last example, we note that this is just  times the residue,  . Since the path is traced

clockwise, we find the contribution is , which is what we obtained above. A Similar computation will give the
contribution from  as . Adding these values gives the total contribution from as zero. So, the final result is that

Evaluate , for .

Solution

z = ±i 8.5.27

C± C

0 = + + .∫
C

dz

+1z2
∫
C+

dz

+1z2
∫
C−

dz

+1z2

8.5.27

z = i+ ϵeiθ +1 = 2iϵ +z2 eiθ ϵ2e2iθ

= dθ = dθ = − .∫
C+

dz

+1z2
lim
ϵ→0

∫
−π

0

iϵeiθ

2iϵ +eiθ ϵ2e2iθ

1

2
∫

−π

0

π

2

πi Res[ ; z = i]=1
+1z2

1
21

−πiRes = − π

2

z = −i π

2
C±

= 0.∮
|z|=1

dz

+1z2

 Example 8.5.32

dx∫ ∞
−∞

eax

1+ex
0 < a < 1
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In dealing with integrals involving exponentials or hyperbolic functions it is sometimes useful to use different types of
contours. This example is one such case. We will replace  with  and integrate over the contour in Figure . Letting 

, the integral along the real axis is the integral that we desire. The integral along the path for  leads to a multiple
of this integral since  along this path. Integration along the vertical paths vanish as . This is captured in
the following integrals:

Figure : Example using a rectangular contour.

We can now let . For large  the second integral decays as  and the fourth integral decays as . Thus, we
are left with

We need only evaluate the left contour integral using the Residue Theorem. The poles are found from

Within the contour, this is satisfied by . So,

Applying the Residue Theorem, we have

Therefore, we have found that

x z 8.5.28
R → ∞ y = 2π

z = x+2πi R → ∞

dz =∮
CR

eaz

1 +ez
dx+ dy∫

R

−R

eax

1 +ex
∫

2π

0

ea(R+iy)

1 +eR+iy

+ dx+ dy∫
−R

R

ea(x+2πi)

1 +ex+2πi
∫

0

2π

ea(−R+iy)

1 +e−R+iy
(8.5.50)

8.5.28

R → ∞ R e(a−1)R e−aR

dz∮
C

eaz

1 +ez
= ( dx− dx)lim

R→∞
∫

R

−R

eax

1 +ex
e2πia ∫

R

−R

eax

1 +ex

= (1 − ) dx.e2πia ∫
∞

−∞

eax

1 +ex
(8.5.51)

1 + = 0.ez

z = iπ

Res[ ; z = iπ] = (z− iπ) = − .
eaz

1 +ez
lim
z→iπ

eaz

1 +ez
eiπa

(1 − ) dx = −2πi .e2πia ∫
∞

−∞

eax

1 +ex
eiπa

dx = = , 0 < a < 1.∫
∞

−∞

eax

1 +ex
−2πieiπa

1 −e2πia

π

sinπa
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Integration Over Multivalued Functions
We have seen that some complex functions inherently possess multivaluedness; i.e., such "functions" do not evaluate to a single
value, but have many values. The key examples were  and . The th roots have  distinct values and
logarithms have an infinite number of values as determined by the range of the resulting arguments. We mentioned that the way to
handle multivaluedness is to assign different branches to these functions, introduce a branch cut and glue them together at the
branch cuts to form Riemann surfaces. In this way we can draw continuous paths along the Riemann surfaces as we move from one
Riemann sheet to another.

Before we do examples of contour integration involving multivalued functions, lets first try to get a handle on multivaluedness in a
simple case. We will consider the square root function,

There are two branches, corresponding to each  value. If we follow a path not containing the origin, then we stay in the same
branch, so the final argument  will be equal to the initial argument. However, if we follow a path that encloses the origin, this
will not be true. In particular, for an initial point on the unit circle, , we have its image as . However, if we go
around a full revolution, , then

but

Here we obtain a final argument  that is not equal to the initial argument! Somewhere, we have crossed from one branch to
another. Points, such as the origin in this example, are called branch points. Actually, there are two branch points, because we can
view the closed path around the origin as a closed path around complex infinity in the compactified complex plane. However, we
will not go into that at this time.

We can demonstrate this in the following figures. In Figure  we show how the points A-E are mapped from the -plane into
the -plane under the square root function for the principal branch, . As we trace out the unit circle in the -plane, we only
trace out a semicircle in the -plane. If we consider the branch , we then trace out a semicircle in the lower half plane, as
shown in Figure  following the points from  to .

Figure : In this figure we show how points on the unit circle in the -plane are mapped to points in the -plane under the
principal square root function.

f(z) = z1/n f(z) = lnz n n

w = = , k = 0, 1.z1/2 r1/2e
i( +kπ)θ

2

k

(θ)

=z0 eiθ0 =w0 ei /2θ0

θ = +2πθ0

= = ,z1 ei +2πiθ0 eiθ0

= = ≠ .w1 e(i +2πi)/2θ0 ei /2θ0 eπi w0

(θ)

8.5.29 z

w k = 0 z

w k = 1
8.5.30 F J

8.5.29 z w

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90968?pdf


8.5.45 https://math.libretexts.org/@go/page/90968

Figure : In this figure we show how points on the unit circle in the -plane are mapped to points in the -plane under the
square root function for the second branch, .

We can combine these into one mapping depicting how the two complex planes corresponding to each branch provide a mapping to
the w-plane. This is shown in Figure .

Figure : In this figure we show the combined mapping using two branches of the square root function.

A common way to draw this domain, which looks like two separate complex planes, would be to glue them together. Imagine
cutting each plane along the positive -axis, extending between the two branch points,  and . As one approaches the
cut on the principal branch, then one can move onto the glued second branch. Then one continues around the origin on this branch
until one once again reaches the cut. This cut is glued to the principal branch in such a way that the path returns to its starting point.
The resulting surface we obtain is the Riemann surface shown in Figure . Note that there is nothing that forces us to place the
branch cut at a particular place. For example, the branch cut could be along the positive real axis, the negative real axis, or any path
connecting the origin and complex infinity.

8.5.30 z w
k = 1

8.5.31

8.5.31

x z = 0 z = ∞

8.5.32
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Figure : Riemann surface for  .

We now look at examples involving integrals of multivalued functions.

Evaluate .

Solution

We consider the contour integral .

The first thing we can see in this problem is the square root function in the integrand. Being there is a multivalued function, we
locate the branch point and determine where to draw the branch cut. In Figure  we show the contour that we will use in
this problem. Note that we picked the branch cut along the positive -axis.

8.5.32 f(z) = z1/2

 Example 8.5.33

dx∫
∞

0

x√

1+x2

dz∮C
z√

1+z2

8.5.33
x
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Figure : An example of a countour which accounts for a branch cut.

We take the contour  to be positively oriented, being careful to enclose the two poles and to hug the branch cut. It consists of
two circles. The outer circle  is a circle of radius  and the inner circle  will have a radius of . The sought answer will
be obtained by letting  and . On the large circle we have that the integrand goes to zero fast enough as .
The integral around the small circle vanishes as . We can see this by parametrizing the circle as  for  :

It should now be easy to see that as  this integral vanishes.

The integral above the branch cut is the one we are seeking, . The integral under the branch cut, where ,
is

We note that this is the same as that above the cut.

Up to this point, we have that the contour integral, as  and  is

In order to finish this problem, we need the residues at the two simple poles.

So,

8.5.33

C

CR R Ce ϵ

R → ∞ ϵ → 0 R → ∞
ϵ → 0 z = ϵeiθ θ ∈ [0, 2π]

dz∮
Cϵ

z√

1 +z2
= iϵ dθ∫

2π

0

ϵeiθ
−−−

√

1 +(ϵ )eiθ
2

eiθ

= i dθϵ3/2 ∫
2π

0

e3iθ/2

1 +( )ϵ2e2iθ
(8.5.52)

ϵ → 0

dx∫ ∞
0

x√

1+x2
z = re2πi

∫ dz
z√

1 +z2
= dr∫

0

∞

re2πi
− −−−

√

1 +r2e4πi

= dr.∫
∞

0

r√

1 +r2
(8.5.53)

R → ∞ ϵ → 0

dz = 2 dx.∮
C

z√

1 +z2
∫

∞

0

x−−√

1 +x2

Res[ ; z = i]
z√

1 +z2

Res[ ; z = −i]
z√

1 +z2

= = (1 + i),
i√

2i

2
–

√

4

= = (1 − i).
−i
−−

√

−2i

2
–

√

4
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Finally, we have the value of the integral that we were seeking,

Compute  using contour integration involving logarithms.

In this example we will apply contour integration to the integral

for the contour shown in Figure .

Figure : Contour needed to compute .

We will assume that  is single valued and vanishes as . We will choose the branch cut to span from the origin
along the positive real axis. Employing the Residue Theorem and breaking up the integrals over the pieces of the contour in

Figure , we have schematically that

First of all, we assume that  is well behaved at  and vanishes fast enough as . Then, the integrals over 
 and  will vanish. For example, for the path , we let . Then,

2 dx = 2πi( (1 + i) + (1 − i)) = π . ∫
∞

0

x−−√

1 +x2

2
–√

4

2
–√

4
2
–

√

dx = . ∫
∞

0

x−−√

1 +x2

π 2
–

√

2

 Example 8.5.34

f(x)dx∫ ∞
a

2

f(z) ln(a−z)dz∮
C

8.5.34

8.5.34 f(z) ln(a− z)dz∮
C

f(z) |z| → ∞

8.5.34

2πi∑Res[f(z) ln(a − z)] = ( + + + )f(z) ln(a − z)dz∫
C1

∫
C2

∫
C3

∫
C4

f(z) z = a |z| = R → ∞
C2 C4 C4 z = a+ ϵ , 0 < θ < 2πeiθ
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If  is well behaved, then we only need to show that . This is left to the reader.

Similarly, we consider the integral over  as  gets large,

Thus, we need only require that

Next, we consider the two straight line pieces. For , the integration along the real axis occurs for , so

However, integration over  requires noting that we need the branch for the logarithm such that .
Then,

Combining these results, we have

Therefore,

This approach was originally published in Neville, E. H., 1945, Indefinite integration by means of residues. The Mathematical
Student, 13, 16-35, and discussed in Duffy, D. G., Transform Methods for Solving Partial Differential Equations, 

Compute .

Solution
We can apply the last example to this case. We see from Figure  that the two poles at  are inside contour . So,

we compute the residues of  at these poles and find that

f(z) ln(a−z)dz. = f (a+ ϵ ) ln(ϵ )iϵ dθ.∫
C4

lim
ϵ→0

∫
0

2π
eiθ eiθ eiθ

f(a) ϵ lnϵ = 0limϵ→0

C2 R

f(z) ln(a−z)dz = f (R ) ln(R )i dθ. ∫
C2

lim
R→∞

∫
2π

0
eiθ eiθ Reiθ

R lnR f (R ) = 0.lim
R→∞

∣∣ eiθ ∣∣

C1 z = x

f(z) ln(a−z)dz = f(x) ln(a−x)dz.∫
C1

∫
∞

a

C3 lnz = ln(a−x) +2πi

f(z) ln(a−z)dz = f(x)[ln(a−x) +2πi]dz.∫
C3

∫
a

∞

2πi∑Res[f(z) ln(a−z)] =

=

f(x) ln(a−x)dz∫
∞

a

+ f(x)[ln(a−x) +2πi]dz.∫
a

∞

−2πi f(x)dz.∫
∞

a

(8.5.54)

f(x)dx = −∑Res[f(z) ln(a−z)]∫
∞

a

 Note

1994.

 Example 8.5.35

∫ ∞
1

dx

4 −1x2

8.5.35 z = ± 1
2

C
ln(1−z)

4 −1z2

∫
∞

1

dx

4 −1x2
= −Res[ ; ]−Res[ ; − ]

ln(1 −z)

4 −1z2

1

2

ln(1 −z)

4 −1z2

1

2

= − + =
ln 1

2

4

ln 3
2

4

ln3

4
(8.5.55)
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Figure : Contour needed to compute 

Appendix: Jordan’s Lemma
For completeness, we prove Jordan's Lemma

If  converges uniformly to zero as , then

where  and  is the upper half of the circle .

Proof

We consider the integral

where  and  is the upper half of the circle  in the complex plane. Let  be a parametrization of .
Then,

Since

then for large  for some . Then,

8.5.35 .∫ ∞
1

dx

4 −1x2

 Theorem : Jordan's Lemma8.5.8

f(z) z → ∞

f(z) dz = 0lim
R→∞

∫
CR

eikz

k > 0 CR |z| = R

= f(z) dz,IR ∫
CR

eikz

k > 0 CR |z| = R z = Reiθ CR

= f (R ) iR dθ.IR ∫
π

0
eiθ eikR cos θ−aR sin θ eiθ

f(z) = 0, 0 ≤ arg z ≤ πlim
|z|→∞

|R|, |f(z)| < ϵ ϵ > 0
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The last integral still cannot be computed, but we can get a bound on it over the range . Note from Figure 
that

Therefore, we have

For large  we have

So, as , the integral vanishes.

Figure : Plots of  and  to show where .

This page titled 8.5: Complex Integration is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

| |IR = f (R ) iR dθ
∣
∣
∣∫

π

0
eiθ eikR cos θ−aR sin θ eiθ

∣
∣
∣

≤ f (R ) iR dθ∫
π

0

∣∣ eiθ ∣∣ ∣∣e
ikR cos θ ∣∣ ∣∣e

−aR sin θ ∣∣ ∣∣ eiθ ∣∣

≤ ϵR dθ∫
π

0
e−aR sin θ

= 2ϵR dθ.∫
π/2

0
e−aR sin θ (8.5.56)

θ ∈ [0, π/2] 8.5.36

sinθ ≥ θ, θ ∈ [0, π/2].
2

π

| | ≤ 2ϵR dθ = (1 − ) .IR ∫
π/2

0
e−2aRθ/π 2ϵR

2aR/π
e−aR

R

| | ≤ .lim
R→∞

IR
πϵ

a

ϵ → 0

8.5.36 y = sin θ y = θ2
π

sin θ ≥ θ2
π
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8.6: Laplace’s Equation in 2D, Revisited
Harmonic functions are solutions of Laplace’s equation. We have seen that the real and imaginary parts of a holomorphic function
are harmonic. So, there must be a connection between complex functions and solutions of the two-dimensional Laplace equation.
In this section we will describe how conformal mapping can be used to find solutions of Laplace’s equation in two dimensional
regions.

In Section 2.5 we had first seen applications in two-dimensional steadystate heat flow (or, diffusion), electrostatics, and fluid flow.
For example, letting  be the electric potential, one has for a static charge distribution, , that the electric field, ,
satisfies

In regions devoid of charge, these equations yield the Laplace equation, .

Similarly, we can derive Laplace’s equation for an incompressible,  0 , irrotational,, , fluid flow. From well-
known vector identities, we know that  for a scalar function, . Therefore, we can introduce a velocity potential, ,
such that . Thus,  implies . So, the velocity potential satisfies Laplace’s equation.

Fluid flow is probably the simplest and most interesting application of complex variable techniques for solving Laplace’s equation.
So, we will spend some time discussing how conformal mappings have been used to study two-dimensional ideal fluid flow,
leading to the study of airfoil design.

Fluid Flow
The study of fluid flow and conformal mappings dates back to Euler, Riemann, and others.  The method was further elaborated
upon by physicists like Lord Rayleigh (1877) and applications to airfoil theory we presented in papers by Kutta (1902) and
Joukowski (1906) on later to be improved upon by others.

"On the Use of Conformal Mapping in Shaping Wing Profiles," MAA lecture by R. S. Burington, 1939 , published (1940) in ...
362-373

The physics behind flight and the dynamics of wing theory relies on the ideas of drag and lift. Namely, as the the cross section of a
wing, the airfoil, goes through the air, it will experience several forces. The air speed above and belong the wing will differ due to
the distance the air has to travel across the top and bottom of the wing. According to Bernoulli’s Principle, steady fluid flow
satisfies the conservation of energy in the form

at points on either side of the wing profile. Here  is the pressure,  is the air density,  is the fluid speed,  is a reference height,
and  is the acceleration due to gravity. The gravitational potential energy, , is roughly constant on either side of the wing. So,
this reduces to

Therefore, if the speed of the air below the wing is lower that than above the wing, the pressure below the wing will be higher,
resulting in a net upward pressure. Since the pressure is the force per area, this will result in an upward force, a lift force, acting on
the wing. This is the simplified version for the lift force. There is also a drag force acting in the direction of the flow. In general, we
want to use complex variable methods to model the streamlines of the airflow as the air flows around an airfoil.

We begin by considering the fluid flow across a curve,  as shown in Figure . We assume that it is an ideal fluid with zero
viscosity (i.e., does not flow like molasses) and is incompressible. It is a continuous, homogeneous flow with a constant thickness
and represented by a velocity , where  and  are the horizontal components of the flow as shown in Figure 

.

ϕ(r) ρ(r) E = ∇ϕ

∇ ⋅ E = ρ/ .ϵ0

ϕ = 0∇2

∇ ⋅ v = ∇ ×v = 0
∇ ×∇ϕ = 0 ϕ ϕ

v = ∇ϕ ∇ ⋅ v = 0 ϕ = 0∇2

1

 Note

P + ρ +ρgh =  constant 
1

2
U 2

P ρ U h

g ρgh

P + ρ =  constant. 
1

2
U 2

C 8.6.1

U = (u(x, y), v(x, y)) u v

8.6.1
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Figure : Fluid flow  across curve  between the points  and .

We are interested in the flow of fluid across a given curve which crosses several streamlines. The mass that flows over  per unit
thickness in time  can be given by

Here  is the normal area to the flow and for unit thickness can be written as . Therefore, for a unit thickness
the mass flow rate is given by

Since the total mass flowing across  in time  is given by , for constant density, this also gives the volume flow rate,

over a section of the curve. The total volume flow over  is therefore

If this flow is independent of the curve, i.e., the path, then we have

[This is just a consequence of Green’s Theorem in the Plane. See Equation (8.1.3).] Another way to say this is that there exists a
function, , such that . Then,

However, from basic calculus of several variables, we know that

8.6.1 U C A B

C

dt

dm = ρU ⋅ dAdt.n̂

dAn̂ dA = idy− idxn̂

= ρ(udy−vdx).
dm

dt

ds dt dm = ρdV

= udy−vdx
dV

dt

C

= udy−vdx.
dV

dt

∣
∣
∣
total 

∫
C

= − . 
∂u

∂x

∂v

∂y

ψ(x, t) dψ = udy−vdx

udy−vdx = dψ = − .∫
C

∫
B

A

ψB ψA

dψ = dx+ dy = udy−vdx.
∂ψ

∂x

∂ψ

∂y
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Therefore,

It follows that if  has continuous second derivatives, then . This function is called the streamline function.

Figure : An amount of fluid crossing curve  in unit time.

Furthermore, for constant density, we have

This is the conservation of mass formula for constant density fluid flow.

We can also assume that the flow is irrotational. This means that the vorticity of the flow vanishes; i.e., . Since the curl
of the velocity field is zero, we can assume that the velocity is the gradient of a scalar function, . Then, a standard vector
identity automatically gives

For the two-dimensional flow with , we have

This is the velocity potential function for the flow.

Let’s place the two-dimensional flow in the complex plane. Let an arbitrary point be . Then, we have found two real-
valued functions,  and , satisfying the relations

u = , v= − .
∂ψ

∂y

∂ψ

∂x

ψ(x, y) = −ux vy

8.6.2 c

∇ ⋅ (ρU) = ρ( + )
∂u

∂x

∂v

∂y

= ρ( ) = 0.
ψ∂2

∂y∂x

ψ∂2

∂x∂y
(8.6.1)

∇ ×U = 0
U = ∇ϕ

∇ ×U = ∇ ×∇ϕ = 0.

U = (u, v)

u = , v= .
∂ϕ

∂x

∂ϕ

∂y

z = (x, y)
ψ(x, y) ψ(x, y)
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These are the Cauchy-Riemann relations for the real and imaginary parts of a complex differentiable function,

From its form,  is called the complex velocity and  is the flow speed.

Furthermore, we have

Integrating, we have

Therefore, the streamline and potential functions are given by the integral forms

These integrals give the circulation  and the fluid flow per time, .

The streamlines for the flow are given by the level curves  and the potential lines are given by the level curves 
. These are two orthogonal families of curves; i.e., these families of curves intersect each other orthogonally at each

point as we will see in the examples. Note that these families of curves also provide the field lines and equipotential curves for
electrostatic problems.

Streamliners and potential curves are orthogonal families of curves.

Show that  and  are an orthogonal family of curves when  is
holomorphic.

Solution
In order to show that these curves are orthogonal, we need to find the slopes of the curves at an arbitrary point, . For 

, we recall from multivaribale calculus that

u = =
∂ϕ

∂x

∂ψ

∂y

v= = −
∂ϕ

∂y

∂ψ

∂x
(8.6.2)

F (z(x, y) = ϕ(x, y) + iψ(x, y).

 Note

dF

dz
=∣∣

dF

dz
∣∣

− −−−
√ +u2 v2

− −−−−−
√

= + i = u− iv.
dF

dz

∂ϕ

∂x

∂ψ

∂x

F =

ϕ(x, y) + iψ(x, y) =

(u− iv)dz∫
C

[u(x, y)dx+v(x, y)dy]∫
(x,y)

( , )x0 y0

+ i [−v(x, y)dx+u(x, y)dy].∫
(x,y)

( , )x0 y0

(8.6.3)

ϕ(x, y) = [u(x, y)dx+v(x, y)dy],∫
(x,y)

( , )x0 y0

ψ(x, y) = [−v(x, y)dx+u(x, y)dy].∫
(x,y)

( , )x0 y0

(8.6.4)

ds = udx+vdy∫C Vs ∫C −vdx+udy∫C

ψ(x, y) = c1

ϕ(x, y) = c2

 Note

 Example 8.6.1

ϕ(x, y) = c1 ψ(x, y) = c2 F (z) = ϕ(x, y) + iψ(x, y)

(x, y)
ϕ(x, y) = c1

dϕ = dx+ dy = 0.
∂ϕ

∂x

∂ϕ

∂y
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So, the slope is found as

Similarly, we have

Since  is differentiable, we can use the Cauchy-Riemann equations to find the product of the slopes satisfy

Therefore,  and  form an orthogonal family of curves.

As an example, consider . Then,  and . The slopes of the
families of curves are given by

The products of these slopes is . The orthogonal families are depicted in Figure .

= −
dy

dx

∂ϕ

∂x

∂ϕ

∂y

= − . 
dy

dx

∂ψ

∂x

∂ψ

∂y

F (z)

= − = −1.
∂ϕ

∂ϕ

∂ϕ

∂ψ

∂x

∂ψ

∂y

∂ψ

∂y

∂ψ

∂y

∂ψ

∂x

ϕ(x, y) = c1 ψ(x, y) = c2

F (z) = = − +2ixyz2 x2 y2 ϕ(x, y) = −x2 y2 ψ(x, y) = 2xy

dy

dx

dy

dx

= −
∂ϕ

∂x

= − = .
2x

∂y

x

y

= −

∂ψ

∂x

∂ψ

∂y

= − = − .
2y

2x

y

x
(8.6.5)

−1 8.6.3
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Figure : Plot of the orthogonal families  (dashed) and .

We will now turn to some typical examples by writing down some differentiable functions, , and determining the types of
flows that result from these examples. We will then turn in the next section to using these basic forms to solve problems in slightly
different domains through the use of conformal mappings.

Describe the fluid flow associated with , where  and  are real.

Solution
For this example, we have

Thus, the velocity is constant,

Thus, the velocity is a uniform flow at an angle of .

Since

Thus, we have

8.6.3 ϕ = − =x2 y2 c1 ϕ(x,y) = 2xy = c2

F (z)

 Example 8.6.2

F (z) = zU0e
−iα U0 α

= = u− iv.
dF

dz
U0e

−iα

U = ( cosα, sinα)U0 U0

α

F (z) = z = (x cosα+y sinα) + i (y cosα−x sinα).U0e
−iα U0 U0

ϕ(x, y) = (x cosα+y sinα),U0

ψ(x, y) = (y cosα−x sinα).U0 (8.6.6)
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An example of this family of curves is shown in Figure .

Figure : Stream lines (solid) and potential lines (dashed) for uniform flow at an angle of , given by .

Describe the flow given by .

Solution
We write

The level curves become

The level curves for the stream and potential functions satisfy equations of the form

8.6.4

8.6.4 α F (z) = zU0e
−iα

 Example 8.6.3

F (z) =
u0e

−iα

z−z0

F (z) =

=

=

U0e−iα

z−z0

[(x− ) − i (y− )]
(cosα+ i sinα)U0

+(x− )x0
2

(y− )y0
2

x0 y0

[(x− ) cosα+(y− ) sinα]
U0

+(x− )x0
2

(y− )y0
2

x0 y0

+ i [−(y− ) cosα+(x− ) sinα] .
U0

+(x− )x0
2 (y− )y0

2
y0 x0 (8.6.7)

ϕ(x, y) = [(x− ) cosα+(y− ) sinα] = ,
U0

+(x− )x0
2

(y− )y0
2

x0 y0 c1

ψ(x, y) = [−(y− ) cosα+(x− ) sinα] = .
U0

+(x− )x0
2 (y− )y0

2
y0 x0 c2 (8.6.8)
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where , and ., These can be written in the more suggestive form

for . Thus, the stream and potential curves are circles with varying radii  and centers 
 ). Examples of this family of curves is shown for  in in Figure  and for

 in in Figure .

Figure : Stream lines (solid) and potential lines (dashed) for the flow given by  for .

(Δ +Δ )−cos(α+ )Δx−sin(α+ )Δy = 0,βi x2 y2 δi δi

Δx = x− , Δy = y− , = , = 0x0 y0 βi
ci

U0
δ1 = π/2δ2

+ =(Δx− cos(α− ))γi δi
2

(Δy− sin(α− ))γi δi
2

γ2
i

= , i = 1, 2γi
ci

2U0
( )γi

(( + cos(α− ), + sin(α− ))x0 γi δi y0 γi δi α = 0 8.6.5
α = π/6 8.6.6

8.6.5 F (z) =
U0e

−iα

z
α = 0
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Figure : Stream lines (solid) and potential lines (dashed) for the flow given by  for .

The components of the velocity field for  are found from

Thus, we have

8.6.6 F (z) =
u0e

−iu

z
α = π/6

α = 0

dF

dz
= ( )

d

dz

U0

z−z0

= −
U0

(z− )z0
2

= −
U0 [(x− ) − i (y− )]x0 y0

2

[ + ](x− )x0
2 (y− )y0

2
2

= −
[ + −2i (x− ) (y− )]U0 (x− )x0

2 (y− )y0
2 x0 y0

[ + ](x− )x0
2

(y− )y0
2

2

= − + i
[ + ]U0 (x− )x0

2
(y− )y0

2

[ + ](x− )x0
2 (y− )y0

2
2

[2 (x− ) (y− )]U0 x0 y0

[ + ](x− )x0
2 (y− )y0

2
2

= − + i .
U0

[ + ](x− )x0
2

(y− )y0
2

[2 (x− ) (y− )]U0 x0 y0

[ + ](x− )x0
2 (y− )y0

2
2

(8.6.9)

u

v

= −
U0

[ + ](x− )x0
2 (y− )y0

2
′

= .
[2 (x− ) (y− )]U0 x0 y0

[ + ](x− )x0
2 (y− )y0

2
2

(8.6.10)
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Describe the flow given by .

Solution
We write  in terms of its real and imaginary parts:

The level curves become

Rewriting these equations, we have

In Figure  we see that the stream lines are those for a source or sink depending if  or , respectively.

 Example 8.6.4

F (z) = ln(z− )m
2π

z0

F (z)

F (z) = ln(z− )
m

2π
z0

= [ln + i ] .
m

2π
+(x− )x0

2 (y− )y0
2

− −−−−−−−−−−−−−−−−
√ tan−1 y−y0

x−x0
(8.6.11)

ϕ(x, y) = ln = ,
m

2π
+(x− )x0

2 (y− )y0
2

− −−−−−−−−−−−−−−−−
√ c1

ψ(x, y) = = .
m

2π
tan−1 y−y0

x−x0
c2 (8.6.12)

+(x− )x0
2 (y− )y0

2

y−y0

= ,e4π /mc1

= (x− ) tan .x0
2πc2

m
(8.6.13)

8.6.7 m > 0 m < 0
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Figure : Stream lines (solid) and potential lines (dashed) for the flow given by  for  
.

Describe the flow given by .

Solution
We write  in terms of its real and imaginary parts:

The level curves become

Rewriting these equations, we have

8.6.7 F (z) = ln(z − )m

2π
z0 ( , ) =x0 y0

(2, 1)

 Example 8.6.5

F (z) = − lniΓ
2π

z−z0

a

F (z)

F (z) = − ln
iΓ

2π

z−z0

a

= −i ln +
Γ

2π
+( )

x−x0

a

2

( )
y−y0

a

2
− −−−−−−−−−−−−−−−−−−−

√
Γ

2π
tan−1 y−y0

x−x0
(8.6.14)

ϕ(x, y) = = ,
Γ

2π
tan−1 y−y0

x−x0
c1

ψ(x, y) = − ln = .
Γ

2π
+( )

x−x0

a

2

( )
y−y0

a

2
− −−−−−−−−−−−−−−−−−−−

√ c2 (8.6.15)
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In Figure  we see that the stream lines circles, indicating rotational motion. Therefore, we have a vortex of
counterclockwise, or clockwise flow, depending if  or , respectively.

Figure : Stream lines (solid) and potential lines (dashed) for the flow given by  for  
.

Flow around a cylinder, .

Solution
For this example, we have

y−y0

+( )
x−x0

a

2

( )
y−y0

a

2

= (x− ) tan ,x0
2πc1

Γ

= .e−2π /Γc2 (8.6.16)

8.6.8
Γ > 0 Γ < 0

8.6.8 F (z) = ln(z − )m

2π
z0 ( , ) =x0 y0

(2, 1)

 Example 8.6.6

F (z) = (z+ ) , a, ∈ RU0
a2

z U0
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The level curves become

Note that for the streamlines when  is large, then , or horizontal lines. For , we have . This
behavior is shown in Figure  where we have graphed the solution for .

Figure : Stream lines for the flow given by .

The level curves in Figure  can be obtained using the implicitplot feature of Maple. An example is shown below:

restart: with(plots):  

k0:=20: 

for k from 0 to k0 do  

    P[k]:=implicitplot(sin(t)*(r-1/r)*1=(k0/2-k)/20, r=1..5,  

    t=0..2*Pi, coords=polar,view=[-2..2, -1..1], axes=none,  

    grid=[150,150],color=black):  

    od: 

display({seq(P[k],k=1..k0)},scaling=constrained);

A slight modification of the last example is if a circulation term is added:

The combination of the two terms gives the streamlines,

which are seen in Figure . We can see interesting features in this flow including what is called a stagnation point. A
stagnation point is a point where the flow speed, .

F (z) = (z+ )U0
a2

z

= (x+ iy+ )U0
a2

x+ iy

= (x+ iy+ (x− iy))U0
a2

+x2 y2

= x(1 + )+ i y(1 − ) .U0
a2

+x2 y2
U0

a2

+x2 y2
(8.6.17)

ϕ(x, y) = x(1 + ) = ,U0
a2

+x2 y2
c1

ψ(x, y) = y(1 − ) = .U0
a2

+x2 y2
c2 (8.6.18)

|z| ψ ∼ V y + =x2 y2 a2 ψ = 0
8.6.9 r ≥ a

8.6.9 F (z) = (z + )U0
a2

z

8.6.9

F (z) = (z+ )− ln .U0
a2

z

iΓ

2π

r

a

ψ(x, y) = y(1 − )− ln ,U0
a2

+x2 y2

Γ

2π

r

a′

8.6.10

= 0∣∣
dF

dz
∣∣
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Figure : Stream lines for the flow given by .

Find the stagnation point for the flow .

Solution
Since the flow speed vanishes at the stagnation points, we consider

This can be rewritten as

The solutions are . Thus, there are two stagnation points on the cylinder about which the flow is circulating.
These are shown in Figure .

8.6.10 F (z) = (z + )− lnU0
a2

z
Γ
2π

z
a

 Example 8.6.7

F (z) = (z+ )− i lnz1
z

= 1 − − = 0.
dF

dz

1

z2

i

z

− iz−1 = 0. z2

z = (i± )1
2

3
–

√

8.6.11
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Figure : Stagnation points (red) on the cylinder are shown for the flow given by .

Consider the complex potentials , where  and  for  real.

Solution
We first note that for ,

For , we have

The potential lines are circles and the streamlines are circular arcs as shown in Figure . These correspond to a source at 
 and a sink at . One can also view these as the electric field lines and equipotentials for an electric dipole consisting

of two point charges of opposite sign at the points  and .

8.6.11 F (z) = (z + )− i ln z1
z

 Example 8.6.8

F (z) = lnk

2π
z−a

z−b
k = q k = −i q

z = x+ iy

ln =
z−a

z−b
ln −ln ,(x−a +)2 y2

− −−−−−−−−−−
√ (x−a +)2 y2

− −−−−−−−−−−
√

+ i − i .tan−1 y

x−a
tan−1 y

x−b
(8.6.19)

k = q

ψ(x, y) = [ln −ln ] = ,
q

2π
(x−a +)2 y2
− −−−−−−−−−−

√ (x−a +)2 y2
− −−−−−−−−−−

√ c1

ϕ(x, y) = [ − ] = .
q

2π
tan−1 y

x−a
tan−1 y

x−b
c2 (8.6.20)

8.6.12
z = a z = b

z = a z = b
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Figure : The electric field lines (solid) and equipotentials (dashed) for a dipole given by the complex potential 
 for .

The equations for the curves are found from

where these can be rewritten, respectively, in the more suggestive forms

Note that the first family of curves are the potential curves and the second give the streamlines.

In the case that  we have

So, the roles of the streamlines and potential lines are reversed and the corresponding plots give a flow for a pair of vortices as
shown in Figure .

8.6.12
F (z) = ln

q

2π
z−a

z−b
b = −a

2

(x−a +)2 y2

(x−a)(x−b) +y2

= [(x−b + ] ,C1 )2 y2

= y(a−b),C2 (8.6.21)

+(x− )
a−bC1

1 −C1

2

y2

+(x− )
a+b

2

2

(y− )
(a−b)C2

2

2

=
(a−bC1 )2

(1 − )C1
2

= (1 + )C 2
2 ( )

a−b

2

2

(8.6.22)

k = −iq

F (z) =

=

ln
−iq

2π

z−a

z−b

[ln −ln ] ,
−iq

2π
(x−a +)2 y2
− −−−−−−−−−−

√ (x−a +)2 y2
− −−−−−−−−−−

√

+ [ − ] .
q

2π
tan−1 y

x−a
tan−1 y

x−b
(8.6.23)

8.6.13
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Figure : The streamlines (solid) and potentials (dashed) for a pair of vortices given by the complex potential  
 for .

The streamlines are found using the identity

Conformal Mappings

It would be nice if the complex potentials in the last section could be mapped to a region of the complex plane such that the new
stream functions and velocity potentials represent new flows. In order for this to be true, we would need the new families to once
again be orthogonal families of curves. Thus, the mappings we seek must preserve angles. Such mappings are called conformal
mappings.

We let  map points in the -plane, , to points in the  plane,  by . We have shown this in
Figure 8.3.1.

Map lines in the -plane to curves in the -plane under .

Solution
We have seen how grid lines in the -plane is mapped by  into the  plane in Figure 8.3.2, which is reproduced in
Figure . The horizontal line  is mapped to  and . Eliminating the "parameter" 
between these two equations, we have . This is a parabolic curve. Similarly, the horizontal line  results in
the curve . These curves intersect at .

8.6.13 F (z) =
ln

q

2π
z−a

−b
b = −a

 Note

α− β =tan−1 tan−1 tan−1 α−β

1 +αβ

w = f(z) z (x, y) w (u, v) f(x+ iy) = u+ iv

 Example 8.6.9

z w f(z) = z2

z f(z) = z2 w

8.6.14 x = 1 u(1, y) = 1 −y2 v(1, y) = 2y y

u = 1 − /4v2 y = 1
u = /4 −1v2 w = 2i
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Figure :  plot showing how the function  maps the lines  and  in the -plane into parabolae in
the -plane.

The lines in the z-plane intersect at  at right angles. In the w-plane we see that the curves  and 
 intersect at . The slopes of the tangent lines at  are  and 1 , respectively, as shown in Figure 

.

Figure : The tangents to the images of  and  under  are orthogonal.

In general, if two curves in the -plane intersect orthogonally at  and the corresponding curves in the -plane under the
mapping  are orthogonal at , then the mapping is conformal. As we have seen, holomorphic functions are

8.6.14 2D f(z) = z2 x = 1 y = 1 z

w

z = 1 + i u = 1 − /4v2

u = /4 −1v2 w = 2i (0, 2) −1
8.6.15

8.6.15 x = 1 y = 1 f(z) = z2

z z = z0 w

w = f(z) = f ( )w0 z0
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conformal, but only at points where  

Holomorphic functions are conformal at points where .

Images of the real and imaginary axes under .

Solution
The line  iy maps to  and the line  maps to  . The point of intersection  maps to 

. However, the image lines are the same line, the real axis in the w-plane. Obviously, the image lines are not orthogonal
at the origin. Note that .

One special mapping is the inversion mapping, which is given by

This mapping maps the interior of the unit circle to the exterior of the unit circle in the -plane as shown in Figure .

Figure : The inversion, , maps the interior of a unit circle to the external of a unit circle. Also, segments of aline
through the origin, , are mapped to the line .

Let , where . Then,

Thus,  and , and

Thus, for . Furthermore, for  1 , and for .

In fact, an inversion maps circles into circles. Namely, for , we have

(z) ≠f ′ 0.

 Note

(z) ≠ 0f ′

 Example 8.6.10

f(z) = z2

z = w = = −z2 y2 z = x w = =z2 x2 = 0z0

= 0w0

(0) = 0f ′

f(z) = . 
1

z

w 8.6.16

8.6.16 f(z) = 1
z

y = 2x u = −2v

z = x+ iy + < 1x2 y2

w = = − i .
1

x+ iy

x

+x2 y2

y

+x2 y2

u = x

+x2 y2 v= −
y

+x2 y2

+u2 v2 = +( )
x

+x2 y2

2

(− )
y

+x2 y2

2

= =
+x2 y2

( + )x2 y2 2

1

+x2 y2
(8.6.24)

+ < 1, + > 1x2 y2 u2 U 2 + > 1, + <x2 y2 u2 U 2 + = 1, + = 1x2 y2 u2 U 2

z = +rz0 eiθ
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Also, lines through the origin in the -plane map into lines through the origin in the -plane. Let . This corresponds
to a line with slope  in the -plane, . It maps to

So,  and . This is a line through the origin in the -plane with slope . This is shown in

Figure . Note how the potion of the line  that is inside the unit disk maps to the outside of the disk in the -plane.

The bilinear transformation.

Another interesting class of transformation, of which the inversion is contained, is the bilinear transformation. The bilinear
transformation is given by

where , and  are complex constants. These transformations were studied by mappings was studied by August Ferdinand
Möbius (1790-1868) and are also called Möbius transformations, or linear fractional transformations. We further note that if 

, then the transformation reduces to the constat function.

We can seek to invert the transformation. Namely, solving for , we have

Since  is not defined for , we can say that  maps to the point at infinity, or . Similarly, we can
let  to obtain

Thus, we have that the bilinear transformation is a one-to-one mapping of the extended complex -plane to the extended complex 
-plane.

The extended complex plane is the union of the complex plane plus the point at infinity. This is usually described in more
detail using stereographic projection, which we will not review here.

If  is easily seen to be a linear transformation. Linear transformations transform lines into lines and circles into circles.

When , we can write

w =
1

+rz0 eiθ

=
+rz̄0 e−iθ

| +r |z0 eiθ
2

= +Rw0 e−iθ (8.6.25)

z w z = x+ imx

m z y = mx

f(z) =
1

z

=
1

x+ imx

= .
x− imx

(1 + )xm2
(8.6.26)

u = x

(1+ )xm2 v= − = −mumx

(1+ )xm2 w −m

8.6.16 y = 2x w

 Note

w = f(z) = , ad−bc ≠ 0,
az+b

cz+d

a, b, c d

ad−bc = 0

z

z = (w) = , w ≠ .f−1 −dw+b

cw−a

a

c

(w)f−1 w ≠ a
c

w ≠ a
c

( ) = ∞f−1 a
c

z → ∞

f(∞) = f(z) = − .lim
n→∞

d

c

z

w

 Note

c = 0, f(z)

c ≠ 0
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We note that if , then  is a constant, as noted above. The new form for  shows that it is the composition
of a linear function  , an inversion, , and another linear transformation,  . Since linear
transformations and inversions transform the set of circles and lines in the extended complex plane into circles and lines in the
extended complex plane, then a bilinear does so as well.

What is important in out applications of complex analysis to the solution of Laplace’s equation in the transformation of regions of
the complex plane into other regions of the complex plane. Needed transformations can be found using the following property of
bilinear transformations:

A given set of three points in the -plane can be transformed into a given set of points in the -plane using a bilinear
transformation.

This statement is based on the following observation: There are three independent numbers that determine a bilinear
transformation. If , then

For , we have

Now, let . This gives three equations for the three unknowns , and . Namely,

This systems of linear equation can be put into matrix form as

It is only a matter of solving this system for  in order to find the bilinear transformation.

A quicker method is to use the implicit form of the transformation,

f(z) =
az+b

cz+d

=
c(az+b)

c(cz+d)

=
acz+ad−ad+bc

c(cz+d)

=
a(cz+d) −ad+bc

c(cz+d)

= + .
a

c

bc−ad

c

1

cz+d
(8.6.27)

bc−ad = 0 f(z) = a
c

f(z)

ζ = cz+d g(ζ) = 1
ζ

h(ζ) = + ζa

c

bc−ad

c

z w

a ≠ 0

f(z) =
az+b

cz+d

=
z+ b

a

z+c
a

d
a

≡
z+α

βz+γ
(8.6.28)

w =
z+α

βz+γ

w

w(βz+γ)

−α+wzβ+wγ

=
z+α

βz+γ

= z+α

= z. (8.6.29)

= f ( ) , i = 1, 2, 3wi zi α, β γ

−α+ β+ γ = ,w1z1 w1 z1

−α+ β+ γ = ,w2z2 w2 z2

−α+ β+ γ = .w3z3 w3 z3 (8.6.30)

= . 
⎛

⎝
⎜

−1

−1

−1

w1z1

w2z2

w3z3

w1

w2

w3

⎞

⎠
⎟
⎛

⎝
⎜

α

β

γ

⎞

⎠
⎟

⎛

⎝
⎜

z1

z2

z3

⎞

⎠
⎟

(α, β, γ)T

= .
(z− ) ( − )z1 z2 z3

(z− ) ( − )z3 z2 z1

(w− ) ( − )w1 w2 w3

(w− ) ( − )w3 w2 w1
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Note that this implicit relation works upon insertion of the values , for .

Find the bilinear transformation that maps the points  to the points .

Solution
The implicit form of the transformation becomes

Solving for , we have

We can use the transformation in the last example to map the unit disk containing the points , and 1 to the half plane .
We see that the unit circle gets mapped to the real axis with  mapped to the point at infinity. The point  gets mapped to

Thus, interior points of the unit disk get mapped to the upper half plane. This is shown in Figure .

Figure : The binlinear transformation  maps the unit disk to the upper half plane.

,wi zi i = 1, 2, 3

 Example 8.6.11

−1, i, 1 −1, 0, 1

(z+1)(i−1)

(z−1)(i+1)
z+1

z−1

i−1

i+1

=
(w+1)(0 −1)

(w−1)(0 +1)

= −
w+1

w−1
(8.6.31)

w

w = f(z) = .
(i−1)z+1 + i

(1 + i)z−1 + i

−1, i w > 0
z = −i z = 0

w = = = = 1.
1 + i

−1 + i

1 + i

−1 + i

−1 − i

−1 − i

2

2

8.6.17

8.6.17 f(z) =
(i−1)z+1+i

(1+i)z−1+i
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Figure : Flow ...

This page titled 8.6: Laplace’s Equation in 2D, Revisited is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

8.6.18

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90969?pdf
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/08%3A_Complex_Representations_of_Functions/8.06%3A_Laplaces_Equation_in_2D_Revisited
https://creativecommons.org/licenses/by-nc-sa/3.0
http://people.uncw.edu/hermanr
https://people.uncw.edu/hermanr/pde1/PDEbook


8.7.1 https://math.libretexts.org/@go/page/90970

8.7: Problems

Write the following in standard form.

a. 
b. .
c. .

Write the following in polar form, .

a. .
b. .
c. .

Write the following in rectangular form, .

a. .
b. .
c. .

Find all  such that . Write the solutions in rectangular form, , with no decimal approximation or trig
functions.

Show that  using trigonometric identities and the exponential forms of these
functions.

Find all  such that , or explain why there are none. You will need to consider  and equate real and
imaginary parts of the resulting expression similar to problem 5.

Find the principal value of . Rewrite the base, , as an exponential first.

Consider the circle .

a. Rewrite the equation in rectangular coordinates by setting  .
b. Sketch the resulting circle using part a.
c. Consider the image of the circle under the mapping , given by .

i. By inserting , find the equation of the image curve in polar coordinates.
ii. Sketch the image curve. You may need to refer to your Calculus II text for polar plots. [Maple might help.]

 Exercise 8.7.1

(4 +5i)(2 −3i).
(1 + i)3

5+3i
1−i

 Exercise 8.7.2

z = reiθ

i−1
−2i

+3i3
–

√

 Exercise 8.7.3

z = a+ ib

4eiπ/6

2
–

√ e5iπ/4

(1 − i)100

 Exercise 8.7.4

z = 16iz4 z = a+ ib

 Exercise 8.7.5

sin(x+ iy) = sinx coshy+ i cosx sinhy

 Exercise 8.7.6

z cosz = 2 cos(x+ iy)

 Exercise 8.7.7

ii i

 Exercise 8.7.8

|z−1| = 1

z = x+ iy

f(z) = z2 −1 = 1∣∣z2 ∣∣

z = r = r(cosθ+ i sinθ)eiθ
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Find the real and imaginary parts of the functions:

a. .
b. .
c. .

Find the derivative of each function in Problem 9 when the derivative exists. Otherwise, show that the derivative does not
exist.

Let  be differentiable. Consider the vector field given by  Show that the equations  and 
 are equivalent to the Cauchy-Riemann equations. [You will need to recall from multivariable calculus the del

operator, .]

What parametric curve is described by the function

 ? [Hint: What would you do if you were instead considering the parametric equations  and  ?]

Write the equation that describes the circle of radius 3 which is centered at  in a) Cartesian form (in terms of  and 
); b) polar form (in terms of  and  ); c) complex form (in terms of , and  ).

Consider the function .

a. Show that  is harmonic; i.e., .
b. Find its harmonic conjugate, .
c. Find a differentiable function, , for which  is the real part.
d. Determine  for the function in part c. [Use  and rewrite your answer as a function of .]

Evaluate the following integrals:

a. , where  is the parabola  from  to .
b. , where  and  is the path from  to  consisting of two line segments from  to

 and then  to .
c.  for  the positively oriented circle, . [Hint: Parametrize the circle as , multiply numerator and

denominator by , and put in trigonometric form.]

 Exercise 8.7.9

f(z) = z3

f(z) = sinh(z)
f(z) = cos z̄

 Exercise 8.7.10

 Exercise 8.7.11

f(z) = u+ iv F = vi +uj. ∇ ⋅ F = 0

∇ ×F = 0

∇ = i + j +k
∂

∂x
∂
∂y

∂
∂z

 Exercise 8.7.12

γ(t) = (t−3) + i(2t+1),

0 ≤ t ≤ 2 x = t−3 y = 2t+1

 Exercise 8.7.13

z = 2 − i x y

θ r z, r eiθ

 Exercise 8.7.14

u(x, y) = −3xx3 y2

u(x, y) u = 0∇2

v(x, y)
f(z) u(x, y)

(z)f ′ (z) = + if ′ ∂u
∂x

∂v
∂x

z

 Exercise 8.7.15

dz∫
C
z̄ C y = x2 z = 0 z = 1 + i

f(z)dz∫C f(z) = 2z− z̄ C z = 0 z = 2 + i z = 0
z = 2 z = 2 z = 2 + i

dz∫C
1
+4z2 C |z| = 2 z = 2eiθ

e−iθ
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Let  be the positively oriented ellipse . Define

Find  and . [Hint: Sketch the ellipse in the complex plane. Use the Cauchy Integral Theorem with an appropriate 
, or Cauchy’s Theorem if  is outside the contour.]

Show that

for  the boundary of the square  taken counterclockwise. [Hint: Use the fact that contours can be
deformed into simpler shapes (like a circle) as long as the integrand is analytic in the region between them. After picking a
simpler contour, integrate using parametrization.]

Show that for  and  analytic functions at , with , and ,

For the following determine if the given point is a removable singularity, an essential singularity, or a pole (indicate its order).

a. .
b. .

c. .

d. .
e. .

Find the Laurent series expansion for  about . [Hint: You need to first do a MacLaurin series expansion for
the hyperbolic sine.]

Find series representations for all indicated regions.

a. .
b. . [Hint: Use partial fractions to write this as a sum of two functions first.]

Find the residues at the given points:

a.  at .

 Exercise 8.7.16

C 3 + = 9x2 y2

F ( ) = dz.z0 ∫
C

+2zz2

z−z0

F (2i) F (2)
f(z) z0

 Exercise 8.7.17

= {∫
C

dz

(z−1 − i)n+1

0,

2πi,

n ≠ 0

n = 0

C 0 ≤ x ≤ 2, 0 ≤ y ≤ 2

 Exercise 8.7.18

g h z0 g ( ) ≠ 0,h ( ) = 0z0 z0 ( ) ≠ 0h′ z0

Res[ ; ] = .
g(z)

h(z)
z0

g ( )z0

( )h′ z0

 Exercise 8.7.19

, z = 01−cos z
z2

, z = 0sin z

z2

, z = 1
−1z2

(z−1)2

z , z = 0e1/z

cos , z = ππ

z−π

 Exercise 8.7.20

f(z) = sinh z

z3 z = 0

 Exercise 8.7.21

f(z) = , |z| < 1, |z| > 1z

z−1

f(z) = , |z| < 1, 1 < |z| < 2, |z| > 21
(z−i)(z+2)

 Exercise 8.7.22

2 +3zz2

z−1
z = 1
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b.  at .
c.  at .

Consider the integral .

a. Evaluate this integral by making the substitution ,  and using complex integration methods.
b. In the 1800’s Weierstrass introduced a method for computing integrals involving rational functions of sine and cosine. One

makes the substitution  and converts the integrand into a rational function of . Note that the integration around
the unit circle corresponds to .

i. Show that

ii. Show that

iii. Use the Weierstrass substitution to compute the above integral.

Do the following integrals.

a. 

b. 

c. 

 
[Hint: This is .]

Evaluate the integral .

[Hint: Replace  with  and use the rectangular contour in Figure  with .]

ln(1+2z)
z z = 0

cos z

(2z−π)
3 z = π

2

 Exercise 8.7.23

∫ 2π
0

dθ

5−4 cos θ

2 cosθ = z+ 1
z z = eiθ

t = tan θ

2
t

t ∈ (−∞, ∞)

sinθ = , cosθ = .
2t

1 + t2

1 − t2

1 + t2

dθ =
2dt

1 + t2

 Exercise 8.7.24

dz∮
|z−i|=3

ez

+z2 π2
(8.7.1)

dz.∮
|z−i|=3

−3z+4z2

−4z+3z2
(8.7.2)

dx∫
∞

−∞

sinx

+4x2
(8.7.3)

Im dx∫
∞

−∞
eix

+4x2

 Exercise 8.7.25

dx∫ ∞
0

(ln x)2

1+x2

x z = et 8.7.1 R → ∞
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Figure : Rectangular controur for Problem 25.

Do the following integrals for fun!

a. For  the boundary of the square ,

b. 

c. 

d. 

e. 

f. 

g. 
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C |x| ≤ 2, |y| ≤ 2

.∮
C

dz

z(z−1)(z−3)2

dθ.∫
π

0

θsin2

13 −12 cosθ

.∫
∞

−∞

dx

+5x+6x2

dx∫
∞

0

cosπx

1 −9x2

∫
∞

00

dx

( +9) (1 −xx2 )2

dx∫
∞

0

x−−√

(1 +x)2

dx∫
∞

0

x−−√

(1 +x)2
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9.1: Introduction
Some of the most powerful tools for solving problems in physics are transform methods. The idea is that one can transform the
problem at hand to a new problem in a different space, hoping that the problem in the new space is easier to solve. Such transforms
appear in many forms.

As we had seen in Chapter 3 and will see later in the book, the solutions of linear partial differential equations can be found by
using the method of separation of variables to reduce solving partial differential equations (PDEs) to solving ordinary differential
equations (ODEs). We can also use transform methods to transform the given PDE into ODEs or algebraic equations. Solving these
equations, we then construct solutions of the PDE (or, the ODE) using an inverse transform. A schematic of these processes is
shown below and we will describe in this chapter how one can use Fourier and Laplace transforms to this effect.

Figure : Schematic indicating that PDEs and ODEs can be transformed to simpler problems, solved in the new space and
transformed back to the original space.

In this chapter we will explore the use of integral transforms. Given a function , we define an integral transform to a new
function  as

Here  is called the kernel of the transform. We will concentrate specifically on Fourier transforms,

and Laplace transforms

Example 1 - The Linearized  Equation

As a relatively simple example, we consider the linearized Kortewegde Vries (KdV) equation:

This equation governs the propagation of some small amplitude water waves. Its nonlinear counterpart has been at the center of
attention in the last 40 years as a generic nonlinear wave equation.

9.1.1

 Note

f(x)

F (k)

F (k) = f(x)K(x, k)dx.∫
b

a

K(x, k)

(k) = f(x) dxf̂ ∫
∞

−∞

eikx

F (s) = f(t) dt.∫
∞

0

e−st

KdV

+c +β = 0, −∞ < x < ∞.ut ux uxxx (9.1.1)
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The nonlinear counterpart to this equation is the Korteweg-de Vries (KdV) equation: . This equation
was derived by Diederik Johannes Korteweg (1848-1941) and his student Gustav de Vries (1866-1934). This equation governs
the propagation of traveling waves called solutons. These were first observed by John Scott Russell (1808-1882) and were the
source of a long debate on the existence of such waves. The history of this debate is interesting and the KdV turned up as a
generic equation in many other fields in the latter part of the last century leading to many papers on nonlinear evolution
equations.

We seek solutions that oscillate in space. So, we assume a solution of the form

Such behavior was seen in Chapters 3 and 6 for the wave equation for vibrating strings. In that case, we found plane wave solutions
of the form , which we could write as  by defining . We further note that one often seeks complex solutions
as a linear combination of such forms and then takes the real part in order to obtain physical solutions. In this case, we will find
plane wave solutions for which the angular frequency  is a function of the wavenumber.

Inserting the guess  into the linearized KdV equation, we find that

Thus, we have converted the problem of seeking a solution of the partial differential equation into seeking a solution to an ordinary
differential equation. This new problem is easier to solve. In fact, given an initial value, , we have

Therefore, the solution of the partial differential equation is

We note that this solution takes the form , where

A dispersion relation is an expression giving the angular frequency as a function of the wave number, .

In general, the equation  gives the angular frequency as a function of the wave number, , and is called a dispersion
relation. For , we see that  is nothing but the wave speed. For , the wave speed is given as

This suggests that waves with different wave numbers will travel at different speeds. Recalling that wave numbers are related to
wavelengths, , this means that waves with different wavelengths will travel at different speeds. For example, an initial
localized wave packet will not maintain its shape. It is said to disperse, as the component waves of differing wavelengths will tend
to part company.

For a general initial condition, we write the solutions to the linearized  as a superposition of plane waves. We can do this since
the partial differential equation is linear. This should remind you of what we had done when using separation of variables. We first
sought product solutions and then took a linear combination of the product solutions to obtain the general solution.

For this problem, we will sum over all wave numbers. The wave numbers are not restricted to discrete values. We instead have a
continuous range of values. Thus, "summing" over  means that we have to integrate over the wave numbers. Thus, we have the
general solution

 Note

+6u + = 0ut ux uxxx

u(x, t) = A(t) .eikx (9.1.2)

eik(x±ct) ei(kx±ωt) ω = kc

ω = ω(k)

(9.1.2)

+ i (ck−β )A = 0. 
dA

dt
k3 (9.1.3)

A(0)

A(t) = A(0) .e−i(ck−β )tk3

(9.1.4)

u(x, t) = A(0) .eik(x−(c−β )t)k2

(9.1.5)

ei(kx−ωt)

ω = ck−β .k3

 Note

ω = ω(k)

ω = ω(k) k

β = 0 c β ≠ 0

v= = c−β .
ω

k
k2

k = 2π
λ

KdV

k
1

u(x, t) = A(k, 0) dk.
1

2π
∫

∞

−∞

eik(x−(c−β )t)k2

(9.1.6)
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Note that we have indicated that  is a function of . This is similar to introducing the  ’s and  ’s in the series solution for
waves on a string.

The extra  has been introduced to be consistent with the definition of the Fourier transform which is given later in the
chapter.

How do we determine the  ’s? We introduce as an initial condition the initial wave profile . Then, we have

Thus, given , we seek . In this chapter we will see that

This is what is called the Fourier transform of . It is just one of the so-called integral transforms that we will consider in this
chapter.

In Figure  we summarize the transform scheme. One can use methods like separation of variables to solve the partial
differential equation directly, evolving the initial condition  into the solution  at a later time.

Figure : Schematic of using Fourier transforms to solve a linear evolution equation.

The transform method works as follows. Starting with the initial condition, one computes its Fourier Transform (FT) as

Applying the transform on the partial differential equation, one obtains an ordinary differential equation satisfied by  which
is simpler to solve than the original partial differential equation. Once  has been found, then one applies the Inverse Fourier
Transform (IFT) to  in order to get the desired solution:

A k An Bn

 Note

2π

A(k, 0) u(x, 0) = f(x)

f(x) = u(x, 0) = A(k, 0) dk.
1

2π
∫

∞

−∞

eikx (9.1.7)

f(x) A(k, 0)

A(k, 0) = f(x) dx∫
∞

−∞

e−ikx

f(x)

9.1.2

u(x, 0) u(x, t)

9.1.2

2

A(k, 0) = f(x) dx∫
∞

−∞

e−ikx

A(k, t)

A(k, t)

A(k, t)

u(x, t) = A(k, t) dk
1

2π
∫

∞

−∞

eikx

= A(k, 0) dk.
1

2π
∫

∞

−∞

eik(x−(c−β )t)k2

(9.1.8)
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The Fourier transform as used in this section and the next section are defined slightly differently than how we will define them
later. The sign of the exponentials has been reversed. The one dimensional time dependent Schrödinger equation.

Example 2 - The Free Particle Wave Function
A more familiar example in physics comes from quantum mechanics. The Schrödinger equation gives the wave function 
for a particle under the influence of forces, represented through the corresponding potential function . The one dimensional
time dependent Schrödinger equation is given by

We consider the case of a free particle in which there are no forces, . Then we have

Taking a hint from the study of the linearized KdV equation, we will assume that solutions of Equation  take the form

[Here we have opted to use the more traditional notation,  instead of  as above.]

Inserting the expression for  into , we have

Since this is true for all , we can equate the integrands, giving

As with the last example, we have obtained a simple ordinary differential equation. The solution of this equation is given by

Applying the inverse Fourier transform, the general solution to the time dependent problem for a free particle is found as

We note that this takes the familiar form

where the dispersion relation is found as

The wave speed is given as

As a special note, we see that this is not the particle velocity! Recall that the momentum is given as  So, this wave speed
is , which is only half the classical particle velocity! A simple manipulation of this result will clarify the "problem."

 Note

Ψ(x, t)

V (x)

iℏ = − +V Ψ. Ψt

ℏ2

2m
Ψxx (9.1.9)

V = 0

iℏ = − .Ψt

ℏ2

2m
Ψxx (9.1.10)

(9.1.10)

Ψ(x, t) = ϕ(k, t) dk.
1

2π
∫

∞

−∞

eikx

ϕ(k, t) A(k, t)

Ψ(x, t) (9.1.10)

iℏ dk = − ϕ(k, t)(ik dk.∫
∞

−∞

dϕ(k, t)

dt
eikx

ℏ2

2m
∫

∞

−∞

)2eikx

t

iℏ = ϕ(k, t).
dϕ(k, t)

dt

ℏ2k2

2m

ϕ(k, t) = ϕ(k, 0) .e−i t
ℏk2

2m

Ψ(x, t) = ϕ(k, 0) dk.
1

2π
∫

∞

−∞

e
ik(x− t)ℏk

2m

Ψ(x, t) = ϕ(k, 0) dk,
1

2π
∫

∞

−∞

ei(kx−ωt)

ω = .
ℏk2

2m

v= = .
ω

k

ℏk

2m

p = ℏk. 3

v=
p

2m
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Since , we also see that the dispersion relation is given by

We assume that particles can be represented by a localized wave function. This is the case if the major contributions to the integral
are centered about a central wave number, . Thus, we can expand  about  :

Here  and . Inserting this expression into the integral representation for , we have

We now make the change of variables, , and rearrange the resulting factors to find

Group and phase velocities, , 

Summarizing, for an initially localized wave packet,  with wave numbers grouped around  the wave function, , is
a translated version of the initial wave function up to a phase factor. In quantum mechanics we are more interested in the
probability density for locating a particle, so from

we see that the "velocity of the wave packet" is found to be

This corresponds to the classical velocity of the particle . Thus, one usually defines  to be the group velocity,

and the former velocity as the phase velocity,

Transform Schemes
These examples have illustrated one of the features of transform theory. Given a partial differential equation, we can transform the
equation from spatial variables to wave number space, or time variables to frequency space. In the new space the time evolution is
simpler. In these cases, the evolution was governed by an ordinary differential equation. One solves the problem in the new space
and then transforms back to the original space. This is depicted in Figure  for the Schrödinger equation and was shown in
Figure  for the linearized  equation.

 Note

p = ℏk

ω = = =
ℏk2

2m

p2

2mℏ

E

ℏ

k0 ω(k) k0

ω(k) = + (k− ) t+… .ω0 ω′
0 k0 (9.1.11)

= ω ( )ω0 k0 = ( )ω′
0 ω′ k0 Ψ(x, t)

Ψ(x, t) = ϕ(k, 0) dk,
1

2π
∫

∞

−∞

ei(kx− t− (k− )t−…)ω0 ω′
0 k0

s = k−k0

Ψ(x, t) ≈ ϕ ( +s, 0) ds
1

2π
∫

∞

−∞

k0 ei(( +s)x−( + s)t)k0 ω0 ω′
0

= ϕ ( +s, 0) ds
1

2π
ei(− t+ t)ω0 k0ω

′
0 ∫

∞

−∞

k0 ei( +s)(x− t)k0 ω′
0

= Ψ(x− t, 0) .ei(− t+ t)ω0 k0ω
′
0 ω′

0 (9.1.12)

 Note

=vg
dω

dk
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ω

k

Ψ(x, 0) k0 Ψ(x, t)

|Ψ(x, t) =|2 Ψ(x− t, 0)∣∣ ω′
0

∣∣
2

= = .ω′
0

dω

dk

∣
∣
∣
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Figure : The scheme for solving the Schrödinger equation using Fourier transforms. The goal is to solve for  given 
. Instead of a direct solution in coordinate space (on the left side), one can first transform the initial condition obtaining 
 in wave number space. The governing equation in the new space is found by transforming the PDE to get an ODE. This

simpler equation is solved to obtain . Then an inverse transform yields the solution of the original equation.

This is similar to the solution of the system of ordinary differential equations in Chapter 3,  In that case we diagonalized
the system using the transformation . This lead to a simpler system , where . Solving for , we
inverted the solution to obtain . Similarly, one can apply this diagonalization to the solution of linear algebraic systems of
equations. The general scheme is shown in Figure .

Figure : This shows the scheme for solving the linear system of ODEs  . One finds a transformation between  and 
of the form  which diagonalizes the system. The resulting system is easier to solve for . Then, one uses the inverse
transformation to obtain the solution to the original problem.

Similar transform constructions occur for many other type of problems. We will end this chapter with a study of Laplace
transforms, which are useful in the study of initial value problems, particularly for linear ordinary differential equations with
constant coefficients. A similar scheme for using Laplace transforms is depicted in Figure 9.8.1.

In this chapter we will begin with the study of Fourier transforms. These will provide an integral representation of functions
defined on the real line. Such functions can also represent analog signals. Analog signals are continuous signals which can be
represented as a sum over a continuous set of frequencies, as opposed to the sum over discrete frequencies, which Fourier series
were used to represent in an earlier chapter. We will then investigate a related transform, the Laplace transform, which is useful in
solving initial value problems such as those encountered in ordinary differential equations.

This page titled 9.1: Introduction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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9.2: Complex Exponential Fourier Series
Before deriving the Fourier transform, we will need to rewrite the trigonometric Fourier series representation as a complex
exponential Fourier series. We first recall from Chapter ?? the trigonometric Fourier series representation of a function defined on 

 with period . The Fourier series is given by

where the Fourier coefficients were found as

In order to derive the exponential Fourier series, we replace the trigonometric functions with exponential functions and collect like
exponential terms. This gives

The coefficients of the complex exponentials can be rewritten by defining

This implies that

So far the representation is rewritten as

Re-indexing the first sum, by introducing , we can write

Since  is a dummy index, we replace it with a new  as

We can now combine all of the terms into a simple sum. We first define  for negative s by

Letting , we can write the complex exponential Fourier series representation as

where

[−π, π] 2π

f(x) ∼ + ( cosnx+ sinnx) ,
a0

2
∑
n=1

∞

an bn (9.2.1)
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1

π
∫
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1

π
∫
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(9.2.2)
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2
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∞
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Given such a representation, we would like to write out the integral forms of the coefficients, . So, we replace the  ’s and  ’s
with their integral representations and replace the trigonometric functions with complex exponential functions. Doing this, we have
for .

It is a simple matter to determine the  ’s for other values of . For , we have that

For , we find that

Therefore, we have obtained the complex exponential Fourier series coefficients for all . Now we can define the complex
exponential Fourier series for the function  defined on  as shown below.

We can easily extend the above analysis to other intervals. For example, for  the Fourier trigonometric series is

with Fourier coefficients

This can be rewritten as an exponential Fourier series of the form

= ( + i ) , n = 1, 2, …cn
1

2
an bn

= ( − i ) , n = −1, −2, …cn
1

2
a−n b−n

=c0
a0

2
(9.2.7)

cn an bn

n = 1, 2, …
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1

2
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π
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cn n n = 0

= = f(x)dx.c0
a0

2

1

2π
∫

π

−π

n = −1, −2, …

= = f(x) dx = f(x) dx.cn c̄n
1

2π
∫

π

−π

e−inx¯ ¯¯̄¯̄¯̄¯̄¯ 1

2π
∫

π

−π

einx

n

f(x) [−π, π]

 Complex Exponential Series for  defined on f(x) [−π,π]
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∞
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We can now use this complex exponential Fourier series for function defined on  to derive the Fourier transform by letting 
 get large. This will lead to a sum over a continuous set of frequencies, as opposed to the sum over discrete frequencies, which

Fourier series represent.

This page titled 9.2: Complex Exponential Fourier Series is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
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9.3: Exponential Fourier Transform
Both the trigonometric and complex exponential Fourier series provide us with representations of a class of functions of finite
period in terms of sums over a discrete set of frequencies. In particular, for functions defined on , the period of the
Fourier series representation is . We can write the arguments in the exponentials, , in terms of the angular frequency, 

, as . We note that the frequencies, , are then defined through . Therefore, the complex
exponential series is seen to be a sum over a discrete, or countable, set of frequencies.

We would now like to extend the finite interval to an infinite interval, , and to extend the discrete set of (angular)
frequencies to a continuous range of frequencies, . One can do this rigorously. It amounts to letting  and  get large
and keeping  fixed.

We first define , so that . Inserting the Fourier coefficients (9.2.12) into Equation (9.2.11), we have

Now, we let  get large, so that  becomes small and  approaches the angular frequency . Then,

Definitions of the Fourier transform and the inverse Fourier transform.

Looking at this last result, we formally arrive at the definition of the Fourier transform. It is embodied in the inner integral and can
be written as

This is a generalization of the Fourier coefficients (9.2.12).

Once we know the Fourier transform, , then we can reconstruct the original function, , using the inverse Fourier
transform, which is given by the outer integration,

We note that it can be proven that the Fourier transform exists when  is absolutely integrable, i.e.,

Such functions are said to be .

We combine these results below, defining the Fourier and inverse Fourier transforms and indicating that they are inverse operations
of each other. We will then prove the first of the equations, . [The second equation, , follows in a similar way.]
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The Fourier transform and inverse Fourier transform are inverse operations. Defining the Fourier transform as

and the inverse Fourier transform as

then

and

The proof is carried out by inserting the definition of the Fourier transform, , into the inverse transform definition, 
, and then interchanging the orders of integration. Thus, we have

In order to complete the proof, we need to evaluate the inside integral, which does not depend upon . This is an improper
integral, so we first define

and compute the inner integral as

We can compute . A simple evaluation yields

A plot of this function is in Figure  for . For large  the peak grows and the values of  for  tend to zero as
shown in Figure . In fact, as  approaches  approaches . For , the  function tends to zero.

 Note

F [f ] = (ω) = f(x) dx.f̂ ∫
∞

−∞

ejωx (9.3.5)
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Figure : A plot of the function  for .9.3.1 (x)DΩ Ω = 4
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Figure : A plot of the function  for .

We further note that

and  is infinite at . However, the area is constant for each . In fact,

We can show this by recalling the computation in Example 8.5.30,

Then,

Another way to look at  is to consider the sequence of functions  Then we have shown that this
sequence of functions satisfies the two properties,
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(x)dx∫
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2 sinxΩ

x

= 2 dy∫
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= 2π (9.3.11)
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This is a key representation of such generalized functions. The limiting value vanishes at all but one point, but the area is finite.

Such behavior can be seen for the limit of other sequences of functions. For example, consider the sequence of functions

This is a sequence of functions as shown in Figure . As , we find the limit is zero for  and is infinite for .
However, the area under each member of the sequences is one. Thus, the limiting function is zero at most points but has area one.

Figure : A plot of the functions  for .

The limit is not really a function. It is a generalized function. It is called the Dirac delta function, which is defined by

1. 
2. 

Before returning to the proof that the inverse Fourier transform of the Fourier transform is the identity, we state one more property
of the Dirac delta function, which we will prove in the next section. Namely, we will show that

Returning to the proof, we now have that
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∞

−∞
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2
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9.3.3 n → ∞ x ≠ 0 x = 0

9.3.3 (x)fn n = 2, 4, 8
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−∞

eiω(ξ−x) lim
Ω→∞

DΩ
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Inserting this into , we have

Thus, we have proven that the inverse transform of the Fourier transform of  is .

This page titled 9.3: Exponential Fourier Transform is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

(9.3.9)

[F [f ]]F −1 = [ dω] f(ξ)dξ.
1

2π
∫

∞

−∞

∫
∞

−∞

eiω(ξ−x)

= 2πδ(ξ−x)f(ξ)dξ.
1

2π
∫

∞

−∞

= f(x). (9.3.12)

f f
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9.4: The Dirac Delta Function
In the last section we introduced the Dirac delta function, . As noted above, this is one example of what is known as a
generalized function, or a distribution. Dirac had introduced this function in the s in his study of quantum mechanics as a
useful tool. It was later studied in a general theory of distributions and found to be more than a simple tool used by physicists. The
Dirac delta function, as any distribution, only makes sense under an integral.

P. A. M. Dirac (1902-1984) introduced the  function in his book, The Principles of Quantum Mechanics, 4th Ed., Oxford
University Press, 1958, originally published in 1930, as part of his orthogonality statement for a basis of functions in a Hilbert
space,  in the same way we introduced discrete orthogonality using the Kronecker delta.

Two properties were used in the last section. First one has that the area under the delta function is one,

Integration over more general intervals gives

The other property that was used was the sifting property:

This can be seen by noting that the delta function is zero everywhere except at . Therefore, the integrand is zero everywhere
and the only contribution from  will be from . So, we can replace  with  under the integral. Since  is a
constant, we have that

Properties of the Dirac -function:

(For  simple roots.)

These and other properties are often written outside the integral:

δ(x)

1930′

 Note

δ

< | >= cδ( − )ξ′ ξ′′ ξ′ ξ′′

δ(x)dx = 1.∫
∞

−∞

δ(x)dx ={∫
b

a

1,

0,

0 ∉ [a, b],

0 ∉ [a, b].
(9.4.1)

δ(x−a)f(x)dx = f(a). ∫
∞

−∞

x = a

f(x) x = a f(x) f(a) f(a)

δ(x−a)f(x)dx∫
∞

−∞

= δ(x−a)f(a)dx∫
∞

−∞

= f(a) δ(x−a)dx = f(a).∫
∞

−∞
(9.4.2)

 Note

δ

δ(x−a)f(x)dx = f(a)∫
∞

−∞

δ(ax)dx = δ(y)dy.∫
∞

−∞

1

|a|
∫

∞

−∞

δ(f(x))dx = dx.∫
∞

−∞

∫
∞

−∞

∑
j=1

n δ (x− )xj

| ( )|f ′ xj

n
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for 

Another property results from using a scaled argument, . In this case we show that

As usual, this only has meaning under an integral sign. So, we place  inside an integral and make a substitution  :

If  then

However, if  then

The overall difference in a multiplicative minus sign can be absorbed into one expression by changing the factor  to .
Thus,

Evaluate . This is a straight forward integration:

Solution
The first step is to write . Then, the final evaluation is given by

Even more general than  is the delta function . The integral of  can be evaluated depending upon the number
of zeros of . If there is only one zero, , then one has that

δ(ax) = δ(x)
1

|a|

δ(−x) = δ(x)

δ((x−a)(x−b)) =
[δ(x−a) +δ(x−a)]

|a−b|

(x−b)) =
[δ(x−a) +δ

∣a−b

δ(f(x)) =∑
j

δ (x− )xj

| ( )|f ′ xj

f ( ) = 0, ( ) ≠ 0.xj f ′ xj

ax

δ(ax) = |a δ(x).|−1 (9.4.3)

δ(ax) y = ax

δ(ax)dx∫
∞

−∞
= δ(ax)dxlim

L→∞
∫

L

−L

= δ(y)dy.lim
L→∞

1

a
∫

aL

−aL

(9.4.4)

a > 0

δ(ax)dx = δ(y)dy.∫
∞

−∞

1

a
∫

∞

−∞

a < 0

δ(ax)dx = δ(y)dy = − δ(y)dy.∫
∞

−∞

1

a
∫

−∞

∞

1

a
∫

∞

−∞

1/a 1/|a|

δ(ax)dx = δ(y)dy.∫
∞

−∞

1

|a|
∫

∞

−∞

(9.4.5)

 Example 9.4.1

(5x+1)δ(4(x−2))dx∫ ∞
−∞

(5x+1)δ(4(x−2))dx = (5x+1)δ(x−2)dx = .∫
∞

−∞

1

4
∫

∞

−∞

11

4

δ(4(x−2)) = δ(x−2)1
4

(5x+1)δ(x−2)dx = (5(2) +1) = .
1

4
∫

∞

−∞

1

4

11

4

δ(ax) δ(f(x)) δ(f(x))

f(x) f ( ) = 0x1
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This can be proven using the substitution  and is left as an exercise for the reader. This result is often written as

again keeping in mind that this only has meaning when placed under an integral.

Evaluate .

Solution
This is not a simple . So, we need to find the zeros of . There is only one, . Also, .
Therefore, we have

Note that this integral can be evaluated the long way by using the substitution . Then,  and 
. This gives

More generally, one can show that when  and  for , (i.e.; when one has  simple zeros), then

Evaluate .

Solution
In this case the argument of the delta function has two simple roots. Namely,  when .
Furthermore, . Therefore, . This gives

Inserting this expression into the integral and noting that  is not in the integration interval, we have

Show , where the Heaviside function (or, step function) is defined as

δ(f(x))dx = δ (x− )dx.∫
∞

−∞

∫
∞

−∞

1

| ( )|f ′ x1

x1

y = f(x)

δ(f(x)) = δ (x− ) ,
1

| ( )|f ′ x1
x1

 Example 9.4.2

δ(3x−2) dx∫ ∞
−∞ x2

δ(x−a) f(x) = 3x−2 x = 2
3

| (x)| = 3f ′

δ(3x−2) dx = δ(x− ) dx = = .∫
∞

−∞

x2 ∫
∞

−∞

1

3

2

3
x2 1

3
( )

2

3

2
4

27

y = 3x−2 dy = 3dx

x = (y+2)/3

δ(3x−2) dx = δ(y) dy = ( ) = .∫
∞

−∞

x2 1

3
∫

∞

−∞

( )
y+2

3

2
1

3

4

9

4

27

f ( ) = 0xj ( ) ≠ 0f ′ xj j= 1, 2, … ,n n

δ(f(x)) = δ (x− )∑
j=1

n 1

| ( )|f ′ xj
xj

 Example 9.4.3

cosxδ ( − )dx∫ 2π
0 x2 π2

f(x) = − = 0x2 π2 x = ±π

(x) = 2xf ′ | (±π)| = 2πf ′

δ ( − ) = [δ(x−π) +δ(x+π)].x2 π2 1

2π

x = −π

cosxδ ( − )dx∫
2π

0

x2 π2 = cosx[δ(x−π) +δ(x+π)]dx
1

2π
∫

2π

0

= cosπ = −
1

2π

1

2π
(9.4.6)

 Example 9.4.4

(x) = δ(x)H ′
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and is shown in Figure .

Figure : The Heaviside step function, .

Solution
Looking at the plot, it is easy to see that  for . In order to check that this gives the delta function, we need to
compute the area integral. Therefore, we have

Thus,  satisfies the two properties of the Dirac delta function.

This page titled 9.4: The Dirac Delta Function is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

H(x) ={ 0,
1,

x < 0
x > 0

9.4.1

9.4.1 H(x)

(x) = 0H ′ x ≠ 0

(x)dx = = 1 −0 = 1.∫
∞

−∞

H ′ H(x)|∞−∞

(x)H ′
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9.5: Properties of the Fourier Transform
We now return to the Fourier transform. Before actually computing the Fourier transform of some functions, we prove a few of the
properties of the Fourier transform.

First we note that there are several forms that one may encounter for the Fourier transform. In applications functions can either be
functions of time, , or space, . The corresponding Fourier transforms are then written as

or

 is called the angular frequency and is related to the frequency  by  . The units of frequency are typically given in Hertz
(Hz). Sometimes the frequency is denoted by  when there is no confusion.  is called the wavenumber. It has units of inverse
length and is related to the wavelength, , by .

We explore a few basic properties of the Fourier transform and use them in examples in the next section.

1. Linearity: For any functions  and  for which the Fourier transform exists and constant , we have

and

These simply follow from the properties of integration and establish the linearity of the Fourier transform.

2. Transform of a Derivative:   

Here we compute the Fourier transform (9.3.5) of the derivative by inserting the derivative in the Fourier integral and using
integration by parts.

The limit will vanish if we assume that . The last integral is recognized as the Fourier transform of ,
proving the given property.

3. Higher Order Derivatives:   

The proof of this property follows from the last result, or doing several integration by parts. We will consider the case when 
. Noting that the second derivative is the derivative of  and applying the last result, we have

This result will be true if

The generalization to the transform of the th derivative easily follows.
4. Multiplication by  

This property can be shown by using the fact that  and the ability to differentiate an integral with respect to a
parameter.

f(t) f(x)

(ω) = f(t) dtf̂ ∫
∞

−∞
eiωt (9.5.1)

(k) = f(x) dxf̂ ∫
∞

−∞
eikx (9.5.2)

ω v ω = 2πv
f k

λ k = 2π
λ

f(x) g(x) a

F [f +g] = F [f ] +F [g]

F [af ] = aF [f ].

F [ ] = −ik (k)df

dx
f̂

F [ ]
df

dx
= dx∫

∞

−∞

df

dx
eikx

= − ik f(x) dxlim
L→∞

[f(x) ]eikx
L

−L
∫

∞

−∞
eikx (9.5.3)

f(x) = 0limx→±∞ f

F [ ] = (−ik (k)
fdn

dxn
)n f̂

n = 2 (x)f ′

F [ ]
fd2

dx2
= F [ ]

d

dx
f ′

= −ikF [ ]= (−ik (k).
df

dx
)2 f̂ (9.5.4)

f(x) = 0 and  (x) = 0.lim
x→±∞

lim
x→±∞

f ′

n

x : F [xf(x)] = −i (k)d

dk
f̂

= ixd

dk
eikx eikx
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This result can be generalized to  as an exercise.
5. Shifting Properties: For constant , we have the following shifting properties:

Here we have denoted the Fourier transform pairs using a double arrow as . These are easily proven by inserting
the desired forms into the definition of the Fourier transform (9.3.5), or inverse Fourier transform (9.3.6). The first shift
property  is shown by the following argument. We evaluate the Fourier transform.

Now perform the substitution . Then,

The second shift property  follows in a similar way.
6. Convolution of Functions: We define the convolution of two functions  and  as

Then, the Fourier transform of the convolution is the product of the Fourier transforms of the individual functions:

We will return to the proof of this property in Section 9.6.

Fourier Transform Examples

In this section we will compute the Fourier transforms of several functions.

Find the Fourier transform of a Gaussian, .

Solution
This function, shown in Figure  is called the Gaussian function. It has many applications in areas such as quantum
mechanics, molecular theory, probability and heat diffusion. We will compute the Fourier transform of this function and show
that the Fourier transform of a Gaussian is a Gaussian. In the derivation we will introduce classic techniques for computing
such integrals.

F [xf(x)] = xf(x) dx∫
∞

−∞
eikx

= f(x) ( ) dx∫
∞

−∞

d

dk

1

i
eikx

= −i f(x) dx
d

dk
∫

∞

−∞
eikx

= −i (k).
d

dk
f̂ (9.5.5)

F [ f(x)]xn

a

f(x−a)

f(x)e−iax

↔ (k),eika f̂

↔ (k−a).f̂

(9.5.6)

(9.5.7)

f(x) ↔ (k)f̂

(9.5.6)

F [f(x−a)] = f(x−a) dx.∫
∞

−∞
eikx

y = x−a

F [f(x−a)] = f(y) dy∫
∞

−∞
eik(y+a)

= f(y) dyeika ∫
∞

−∞
eiky

= (k).eika f̂ (9.5.8)

(9.5.7)
f(x) g(x)

(f ∗ g)(x) = f(t)g(x− t)dx.∫
∞

−∞
(9.5.9)

F [f ∗ g] = (k) (k).f̂ ĝ (9.5.10)

 Example 9.5.1

f(x) = e−a /2x2
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Figure : Plots of the Gaussian function  for .

We begin by applying the definition of the Fourier transform,

The first step in computing this integral is to complete the square in the argument of the exponential. Our goal is to rewrite this
integral so that a simple substitution will lead to a classic integral of the form , which we can integrate. The
completion of the square follows as usual:

We now put this expression into the integral and make the substitutions   and .

One would be tempted to absorb the  terms in the limits of integration. However, we know from our previous study that
the integration takes place over a contour in the complex plane as shown in Figure .

9.5.1 f(x) = e−a /2x2
a = 1, 2, 3

(k) = f(x) dx = dx.f̂ ∫
∞

−∞
eikx ∫

∞

−∞
e−a /2+ikxx2

(9.5.11)

dy∫ ∞
−∞

eβy
2

− + ikx
a

2
x2 = − [ − x]

a

2
x2 2ik

a

= − [ − x+ − ]
a

2
x2 2ik

a
(− )

ik

a

2

(− )
ik

a

2

= − − .
a

2
(x− )

ik

a

2
k2

2a
(9.5.12)

y = x− ik
a

β = a
2

(k)f̂ = dx∫
∞

−∞
e−a /2+ikxx2

= dxe−
k2

2a ∫
∞

−∞
e

−
a

2
(x− )ik

a

2

= dy.e−
k2

2a ∫
∞− ik

a

−∞−
ik

a

e−βy2

(9.5.13)

− ik
a

9.5.2
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Figure : Simple horizontal contour.D

In this case we can deform this horizontal contour to a contour along the real axis since we will not cross any singularities of
the integrand. So, we now safely write

The resulting integral is a classic integral and can be performed using a standard trick. Define  by

Then,

Note that we needed to change the integration variable so that we can write this product as a double integral:

This is an integral over the entire -plane. We now transform to polar coordinates to obtain

The final result is gotten by taking the square root, yielding

9.5.2

(k) = dy.f̂ e−
k2

2a ∫
∞

−∞
e−βy2

I 1

I = dy.∫
∞

−∞
e−βy2

= dy dx.I 2 ∫
∞

−∞
e−βy2

∫
∞

−∞
e−βx2

= dxdy.I 2 ∫
∞

−∞
∫

∞

−∞
e−β( + )x2 y2

xy

I 2 = rdrdθ∫
2π

0
∫

∞

0
e−βr2

= 2π rdr∫
∞

0
e−βr2

= − = .
π

β
[ ]e−βr2 ∞

0

π

β
(9.5.14)
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We can now insert this result to give the Fourier transform of the Gaussian function:

Therefore, we have shown that the Fourier transform of a Gaussian is a Gaussian.

Here we show

Note that we solved the  case in Example 5.4.1, so a simple variable transformation  is all that is needed to get
the answer. However, it cannot hurt to see this classic derivation again.

Find the Fourier transform of the Box, or Gate, Function,

Solution
This function is called the box function, or gate function. It is shown in Figure . The Fourier transform of the box function
is relatively easy to compute. It is given by

We can rewrite this as

Here we introduced the sinc function

A plot of this function is shown in Figure . This function appears often in signal analysis and it plays a role in the study of
diffraction.

I = .
π

β

−−
√

(k) = .f̂
2π

a

−−−
√ e− /2ak2

(9.5.15)

 Note

dy = .∫
∞

−∞
e−βy2 π

β

−−
√

β = 1 z = yβ
−−√

 Example 9.5.2

f(x) ={ .
b,

0,

|x| ≤ a

|x| > a

9.5.3

(k)f̂ = f(x) dx∫
∞

−∞
eikx

= b dx∫
a

−a

eikx

=
b

ik
eikx

∣
∣
∣
a

−a

= sinka.
2b

k
(9.5.16)

(k) = 2ab ≡ 2absinc ka.f̂
sinka

ka

sinc x = .
sinx

x

9.5.4
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Figure : A plot of the box function in Example .

Figure : A plot of the Fourier transform of the box function in Example . This is the general shape of the sinc
function.

We will now consider special limiting values for the box function and its transform. This will lead us to the Uncertainty
Principle for signals, connecting the relationship between the localization properties of a signal and its transform.

1.  and  fixed 
In this case, as a gets large the box function approaches the constant function . At the same time, we see that the
Fourier transform approaches a Dirac delta function. We had seen this function earlier when we first defined the Dirac delta
function. Compare Figure  with Figure 9.3.1. In fact, . [Recall the definition of  in Equation
(9.3.10).] So, in the limit we obtain . This limit implies fact that the Fourier transform of  is 

. As the width of the box becomes wider, the Fourier transform becomes more localized. In fact, we have
arrived at the important result that

2. , and . 
In this case the box narrows and becomes steeper while maintaining a constant area of one. This is the way we had found a
representation of the Dirac delta function previously. The Fourier transform approaches a constant in this limit. As a
approaches zero, the sinc function approaches one, leaving . Thus, the Fourier transform of the Dirac
delta function is one. Namely, we have

9.5.3 9.5.2

9.5.4 9.5.2

a → ∞ b

f(x) = b

9.5.4 (k) = b (k)f̂ Da (x)DΩ

(k) = 2πbδ(k)f̂ f(x) = 1

(k) = 2πδ(k)f̂

= 2πδ(k).∫
∞

−∞
eikx (9.5.17)

b → ∞, a → 0 2ab = 1

(k) → 2ab = 1f̂
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In this case we have that the more localized the function  is, the more spread out the Fourier transform, , is. We
will summarize these notions in the next item by relating the widths of the function and its Fourier transform.

3. The Uncertainty Principle, .  
The widths of the box function and its Fourier transform are related as we have seen in the last two limiting cases. It is
natural to define the width,  of the box function as

The width of the Fourier transform is a little trickier. This function actually extends along the entire -axis. However, as 
 became more localized, the central peak in Figure  became narrower. So, we define the width of this function, 

 as the distance between the first zeros on either side of the main lobe as shown in Figure . This gives

Combining these two relations, we find that

Thus, the more localized a signal, the less localized its transform and vice versa. This notion is referred to as the
Uncertainty Principle. For general signals, one needs to define the effective widths more carefully, but the main idea holds:

Figure : The width of the function  is defined as the distance between the smallest magnitude zeros.

We now turn to other examples of Fourier transforms.

Find the Fourier transform of 

Solution
The Fourier transform of this function is

δ(x) = 1.∫
∞

−∞
eikx (9.5.18)

f(x) (k)f̂

ΔxΔk = 4π

Δx

Δx = 2a. 

k

(k)f̂ 9.5.4
Δk 9.5.5

Δk = .
2π

a

ΔxΔk = 4π. 

ΔxΔk ≥ c > 0.

9.5.5 2ab sinka
ka

 Example 9.5.3

f(x) ={ , a > 0
,e−ax

0,

x ≥ 0

x < 0
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Next, we will compute the inverse Fourier transform of this result and recover the original function.

More formally, the uncertainty principle for signals is about the relation between duration and bandwidth, which are defined by

 and , respectively, where  and . Under appropriate

conditions, one can prove that . Equality holds for Gaussian signals. Werner Heisenberg (1901-1976) introduced
the uncertainty principle into quantum physics in 1926 , relating uncertainties in the position  and momentum  of
particles. In this case,  Here, the uncertainties are defined as the positive square roots of the quantum
mechanical variances of the position and momentum.

Find the inverse Fourier transform of .

Solution
The inverse Fourier transform of this function is

This integral can be evaluated using contour integral methods. We evaluate the integral

using Jordan’s Lemma from Section 8.5.8. According to Jordan’s Lemma, we need to enclose the contour with a semicircle in
the upper half plane for  and in the lower half plane for  as shown in Figure .

(k)f̂ = f(x) dx∫
∞

−∞
eikx

= dx∫
∞

0
eikx−ax

= .
1

a− ik
(9.5.19)

 Note

Δt =
∥tf∥2

∥f∥2
Δω =

∥ωf̂ ∥2

∥f∥2
∥f = |f(t) dt∥2 ∫

∞
−∞ |2 ∥ = | (ω) dωf̂ ∥2

1
2π

∫
∞

−∞ f̂ |2

ΔtΔω ≥ 1
2

(Δx) (Δ )px

ΔxΔ ≥ ℏ.px
1
2

 Example 9.5.4

(k) =f̂ 1
a−ik

f(x) = (k) dk = dk.
1

2π
∫

∞

−∞
f̂ e−ikx 1

2π
∫

∞

−∞

e−ikx

a− ik

I = dz,∫
∞

−∞

e−ixz

a− iz

x < 0 x > 0 9.5.6
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Figure : Contours for inverting 

The integrations along the semicircles will vanish and we will have

Note that without paying careful attention to Jordan’s Lemma one might not retrieve the function from the last example.

Find the inverse Fourier transform of  .

Solution
We would like to find the inverse Fourier transform of this function. Instead of carrying out any integration, we will make use
of the properties of Fourier transforms. Since the transforms of sums are the sums of transforms, we can look at each term
individually. Consider . This is a shifted function. From the shift theorems in Equations -  we have the
Fourier transform pair

9.5.6 (k) = .f̂ 1
a−ik

f(x) = dk
1

2π
∫

∞

−∞

e−ikx

a− ik

= ± dz
1

2π
∮
C

e−ixz

a− iz

={
0,

− 2πiRes[z = −ia],1
2π

x < 0

x < 0

={
0,

,e−ax

x < 0

x > 0
(9.5.20)

 Example 9.5.5

(ω) = πδ (ω+ ) +f̂ ω0 πδ (ω− )ω0

δ (ω− )ω0 (9.5.6) (9.5.7)
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Recalling from Example  that

we have from the shift property that

The second term can be transformed similarly. Therefore, we have

Find the Fourier transform of the finite wave train.

Solution
For the last example, we consider the finite wave train, which will reappear in the last chapter on signal analysis. In Figure 

 we show a plot of this function.

A straight forward computation gives

This page titled 9.5: Properties of the Fourier Transform is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

f(t) ↔ (ω− ) .ei tω0 f̂ ω0

9.5.2

dt = 2πδ(ω),∫
∞

−∞
eiωt

[δ (ω− )] = .F −1 ω0
1

2π
e−i tω0

[πδ (ω+ ) +πδ (ω− ] = + = cos t.F −1 ω0 ω0
1

2
ei tω0

1

2
e−i tω0 ω0

 Example 9.5.6

f(t) ={ .
cos t,ω0

0,

|t| ≤ a

|t| > a

9.5.7

(ω)f̂ = f(t) dt∫
∞

−∞
eiωt

= [cos t+ i sin t] dt∫
a

−a

ω0 ω0 eiωt

= cos t cosωtdt+ i sin t sinωtdt∫
a

−a

ω0 ∫
a

−a

ω0

= [cos((ω+ ) t) +cos((ω− ) t)] dt
1

2
∫

a

−a

ω0 ω0

= + .
sin((ω+ )a)ω0

ω+ω0

sin((ω− )a)ω0

ω−ω0
(9.5.21)
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9.6: The Convolution Operation
In the list of properties of the Fourier transform, we defined the convolution of two functions,  and  to be the integral

In some sense one is looking at a sum of the overlaps of one of the functions and all of the shifted versions of the other function.
The German word for convolution is faltung, which means "folding" and in old texts this is referred to as the Faltung Theorem. In
this section we will look into the convolution operation and its Fourier transform.

Before we get too involved with the convolution operation, it should be noted that there are really two things you need to take away
from this discussion. The rest is detail. First, the convolution of two functions is a new functions as defined by  when
dealing wit the Fourier transform. The second and most relevant is that the Fourier transform of the convolution of two functions is
the product of the transforms of each function. The rest is all about the use and consequences of these two statements. In this
section we will show how the convolution works and how it is useful.

The convolution is commutative.

First, we note that the convolution is commutative: . This is easily shown by replacing  with a new variable, 
 and .

The best way to understand the folding of the functions in the convolution is to take two functions and convolve them. The next
example gives a graphical rendition followed by a direct computation of the convolution. The reader is encouraged to carry out
these analyses for other functions.

Graphical Convolution of the box function and a triangle function.

Solution
In order to understand the convolution operation, we need to apply it to specific functions. We will first do this graphically for
the box function

and the triangular function

as shown in Figure .

f(x) g(x)

(f ∗ g)(x) = f(t)g(x− t)dt.∫
∞

−∞
(9.6.1)

(9.6.1)

 Note

f ∗ g = g∗ f x− t

y = x− t dy = −dt

(g∗ f)(x) = g(t)f(x− t)dt∫
∞

−∞

= − g(x−y)f(y)dy∫
−∞

∞

= f(y)g(x−y)dy∫
∞

−∞

= (f ∗ g)(x). (9.6.2)

 Example 9.6.1

f(x) ={
1,

0,

|x| ≤ 1,

|x| > 1

g(x) ={
x,

0,

0 ≤ x ≤ 1,

otherwise

9.6.1
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Figure : A plot of the box function  and the triangle function .

Next, we determine the contributions to the integrand. We consider the shifted and reflected function  in Equation 
 for various values of . For , we have . This function is a reflection of the triangle function, 

, as shown in Figure .

Figure : A plot of the reflected triangle function, .

We then translate the triangle function performing horizontal shifts by . In Figure  we show such a shifted and reflected 
 for , or .

9.6.1 f(x) g(x)

g(t−x)
(9.6.1) t t = 0 g(x−0) = g(−x)
g(x) 9.6.2

9.6.2 g(−t)

t 9.6.3
g(x) t = 2 g(2 −x)
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Figure : A plot of the reflected triangle function shifted by 2 units, .

In Figure  we show several plots of other shifts, , superimposed on .

The integrand is the product of  and  and the integral of the product  is given by the sum of the
shaded areas for each value of .

In the first plot of Figure  the area is zero, as there is no overlap of the functions. Intermediate shift values are displayed
in the other plots in Figure . The value of the convolution at  is shown by the area under the product of the two functions
for each value of .

Figure : A plot of the box and triangle functions with the overlap indicated by the shaded area.

Plots of the areas of the convolution of the box and triangle functions for several values of  are given in Figure . We see
that the value of the convolution integral builds up and then quickly drops to zero as a function of . In Figure  the values
of these areas is shown as a function of .

Figure : Copy and Paste Caption here. (Copyright; author via source)

The plot of the convolution in Figure  is not easily determined using the graphical method. However, we can directly compute
the convolution as shown in the next example.

9.6.3 g(2 − t)

9.6.3 g(x− t) f(x)

f(t) g(x− t) f(t)g(x− t)
x

9.6.4
9.6.4 x

x

9.6.4

x 9.6.3
x 9.6.5

x

9.6.5

9.6.5
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Analytically find the convolution of the box function and the triangle function.

Solution
The nonvanishing contributions to the convolution integral are when both  and  do not vanish.  is nonzero for 

, or  is nonzero for , or . These two regions are shown in Figure 
. On this region, .

Figure : Intersection of the support of  and .

Isolating the intersection in Figure , we see in Figure  that there are three regions as shown by different shadings.
These regions lead to a piecewise defined function with three different branches of nonzero values for , 

, and .

 Example 9.6.2

f(t) g(x− t) f(t)
|t| ≤ 1 −1 ≤ t ≤ 1. g(x− t) 0 ≤ x− t ≤ 1 x−1 ≤ t ≤ x

9.6.6 f(t)g(x− t) = x− t

9.6.6 g(x) f(x)

9.6.7 9.6.7
−1 < x < 0

0 < x < 1 1 < x < 2
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Figure : Intersection of the support of  and  showing the integration regions.

The values of the convolution can be determined through careful integration. The resulting integrals are given as

A plot of this function is shown in Figure .

Convolution Theorem for Fourier Transforms

In this section we compute the Fourier transform of the convolution integral and show that the Fourier transform of the convolution
is the product of the transforms of each function,

First, we use the definitions of the Fourier transform and the convolution to write the transform as

We now substitute  on the inside integral and separate the integrals:

9.6.7 g(x) f(x)

(f ∗ g)(x) = f(t)g(x− t)dt∫
∞

−∞

=

⎧

⎩
⎨

⎪⎪

⎪⎪

(x− t)dt,∫ x

−1

(x− t)dt,∫ x

x−1

(x− t)dt,∫ 1
x−1

−1 < x < 0

0 < x < 1

1 < x < 2

=

⎧

⎩
⎨

⎪⎪

⎪⎪

(x+1 ,1
2 )2

,1
2

[1 −(x−1 ]1
2 )2

−1 < x < 0

0 < x < 1

1 < x < 2

(9.6.3)

9.6.5

F [f ∗ g] = (k) (k).f̂ ĝ (9.6.4)

F [f ∗ g] = (f ∗ g)(x) dx∫
∞

−∞
eikx

= ( f(t)g(x− t)dt) dx∫
∞

−∞
∫

∞

−∞
eikx

= ( g(x− t) dx) f(t)dt.∫
∞

−∞
∫

∞

−∞
eikx (9.6.5)

y = x− t
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We see that the two integrals are just the Fourier transforms of  and . Therefore, the Fourier transform of a convolution is the
product of the Fourier transforms of the functions involved:

Compute the convolution of the box function of height one and width two with itself.

Solution

Let  be the Fourier transform of . Then, the Convolution Theorem says that , or

For the box function, we have already found that

So, we need to compute

One way to compute this integral is to extend the computation into the complex -plane. We first need to rewrite the integrand.
Thus,

We can compute the above integrals if we know how to compute the integral

Then, the result can be found in terms of  as

F [f ∗ g] = ( g(x− t) dx) f(t)dt∫
∞

−∞
∫

∞

−∞
eikx

= ( g(y) dy) f(t)dt∫
∞

−∞
∫

∞

−∞
eik(y+t)

= ( g(y) dy) f(t) dt∫
∞

−∞
∫

∞

−∞
eiky eikt

=( f(t) dt)( g(y) dy)∫
∞

−∞
eikt ∫

∞

−∞
eiky (9.6.6)

f g

F [f ∗ g] = (k) (k). f̂ ĝ

 Example 9.6.3

(k)f̂ f(x) F [f ∗ f ](k) = (k)f̂
2

(f ∗ f)(x) = [ (k)] .F −1 f̂
2

(k) = sink.f̂
2

k

(f ∗ f)(x) = [ k]F −1 4

k2
sin2

= ( k) dk.
1

2π
∫

∞

−∞

4

k2
sin2 e−ikx (9.6.7)

k

(f ∗ f)(x) = k dk
1

2π
∫

∞

−∞

4

k2
sin2 e−ikx

= [1 −cos 2k] dk
1

π
∫

∞

−∞

1

k2
e−ikx

= [1 − ( + )] dk
1

π
∫

∞

−∞

1

k2

1

2
eik e−ik e−ikx

= [ − ( + )]dk.
1

π
∫

∞

−∞

1

k2
e−ikx 1

2
e−i(1−k) e−i(1+k) (9.6.8)

I(y) = dk.
1

π
∫

∞

−∞

e−iky

k2

I(y)

(f ∗ f)(x) = I(x) − [I(1 −k) +I(1 +k)].
1

2
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We consider the integral

over the contour in Figure .

Figure : Contour for computing .

We can see that there is a double pole at . The pole is on the real axis. So, we will need to cut out the pole as we seek the
value of the principal value integral.

Recall from Chapter 8 that

The integral  vanishes since there are no poles enclosed in the contour! The sum of the second and fourth integrals
gives the integral we seek as  and . The integral over  will vanish as  gets large according to Jordan’s
Lemma provided . That leaves the integral over the small semicircle.

As before, we can show that

Therefore, we find

A simple computation of the reside gives , for .

When , we need to close the contour in the lower half plane in order to apply Jordan’s Lemma. Carrying out the
computation, one finds , for . Thus,

We are now ready to finish the computation of the convolution. We have to combine the integrals , and 
, since  . This gives different results in four intervals:

dz∮
C

e−iyz

πz2

9.6.8

9.6.8 P dz∫
∞

−∞
e−iyz

πz2

z = 0

dz = dz+ dz+ dz+ dz.∮
CR

e−iyz

πz2
∫

ΓR

e−iyz

πz2
∫

−ϵ

−R

e−iyz

πz2
∫
Ce

e−iyz

πz2
∫

R

ϵ

e−iyz

πz2

dz∮
CR

e−iyz

πz2

ϵ → 0 R → ∞ ΓR R

y < 0

f(z)dz = −πiRes[f(z); z = 0].lim
ϵ→0

∫
Cϵ

I(y) = P dz = πiRes[ ; z = 0].∫
∞

−∞

e−iyz

πz2

e−iyz

πz2

I(y) = −y y < 0

y > 0
I(y) = y y > 0

I(y) ={
−y,

y,

y > 0,

y < 0,
(9.6.9)

I(y), I(y+1)
I(y−1) (f ∗ f)(x) = I(x)− [I(1 −k) +I(1 +k)]1

2
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A plot of this solution is the triangle function,

which was shown in the last example.

Find the convolution of the box function of height one and width two with itself using a direct computation of the convolution
integral.

Solution
The nonvanishing contributions to the convolution integral are when both  and  do not vanish.  is nonzero for

, or  is nonzero for , or . These two regions are shown in Figure 
. On this region, .

Figure : Plot of the regions of support for  and .

(f ∗ f)(x) = x− [(x−2) +(x+2)] = 0, x < −2,
1

2

= x− [(x−2) −(x+2)] = 2 +x −2 < x < 0,
1

2

= −x− [(x−2) −(x+2)] = 2 −x, 0 < x < 2,
1

2

= −x− [−(x−2) −(x+2)] = 0, x > 2.
1

2
(9.6.10)

(f ∗ f)(x) =

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

0,

2 +x,

2 −x,

0,

x < −2

−2 < x < 0

0 < x < 2

x > 2

(9.6.11)

 Example 9.6.4

f(t) f(x− t) f(t)
|t| ≤ 1 −1 ≤ t ≤ 1. f(x− t) |x− t| ≤ 1 x−1 ≤ t ≤ x+1
9.6.10 f(t)g(x− t) = 1

9.6.9 f(t) f(x− t)
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Figure : A plot of the convolution of a box function with itself. The areas of the overlaps of as  is translated
across  are shown as well. The result is the triangular function.

Thus, the nonzero contributions to the convolution are

Once again, we arrive at the triangle function.

In the last section we showed the graphical convolution. For completeness, we do the same for this example. In Figure  we
show the results. We see that the convolution of two box functions is a triangle function.

Show the graphical convolution of the box function of height one and width two with itself.

Let’s consider a slightly more complicated example, the convolution of two Gaussian functions.

Convolution of two Gaussian functions .

Solution

In this example we will compute the convolution of two Gaussian functions with different widths. Let  and 
. A direct evaluation of the integral would be to compute

This integral can be rewritten as

One could proceed to complete the square and finish carrying out the integration. However, we will use the Convolution
Theorem to evaluate the convolution and leave the evaluation of this integral to Problem 12.

Recalling the Fourier transform of a Gaussian from Example 9.5.1, we have

and

9.6.10 f(x− t)
f(t)

(f ∗ f)(x) ={ ={
dt, 0 ≤ x ≤ 2,∫ x+1

−1

dt, −2 ≤ x ≤ 0,∫ 1
x−1

2 +x,

2 −x,

0 ≤ x ≤ 2,

−2 ≤ x ≤ 0.

9.6.10

 Example 9.6.5

 Example 9.6.6

f(x) = e−ax2

f(x) = e−ax2

g(x) = e−bx2

(f ∗ g)(x) = f(t)g(x− t)dt = dt.∫
∞

−∞
∫

∞

−∞
e−a −b(x−tt2 )2

(f ∗ g)(x) = dt.e−bx2

∫
∞

−∞
e−(a+b) +2bxtt2

(k) = F [ ] =f̂ e−ax2 π

a

−−
√ e− /4ak2

(9.6.12)
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Denoting the convolution function by , the Convolution Theorem gives

This is another Gaussian function, as seen by rewriting the Fourier transform of  as

In order to complete the evaluation of the convolution of these two Gaussian functions, we need to find the inverse transform
of the Gaussian in Equation . We can do this by looking at Equation . We have first that

Moving the constants, we then obtain

We now make the substitution ,

This is in the form needed to invert . Thus, for  we find

Application to Signal Analysis
There are many applications of the convolution operation. One of these areas is the study of analog signals. An analog signal is a
continuous signal and may contain either a finite, or continuous, set of frequencies. Fourier transforms can be used to represent
such signals as a sum over the frequency content of these signals. In this section we will describe how convolutions can be used in
studying signal analysis.

The first application is filtering. For a given signal there might be some noise in the signal, or some undesirable high frequencies.
For example, a device used for recording an analog signal might naturally not be able to record high frequencies. Let  denote
the amplitude of a given analog signal and  be the Fourier transform of this signal such the example provided in Figure 

. Recall that the Fourier transform gives the frequency content of the signal.

Figure : Schematic plot of a signal  and its Fourier transform .

(k) = F [ ] = .ĝ e−bx2 π

b

−−
√ e− /4bk2

h(x) = (f ∗ g)(x)

(k) = (k) (k) = .ĥ f̂ ĝ
π

ab
−−√

e− /4ak2

e− /4bk2

h(x)

(k) = = .ĥ
π

ab
−−√

e
− ( + )1

4

1
a

1

b
k2 π

ab
−−√

e− a+b

4ab
k2

(9.6.13)

(9.6.13) (9.6.12)

[ ]= .F −1 π

a

−−
√ e− /4ak2

e−ax2

[ ] = .F −1 e− /4ak2 a

π

−−
√ e−ax2

α = 1
4a

[ ] = .F −1 e−αk2 1

4πα

− −−−
√ e− /4αx2

(9.6.13) α = a+b

4ab

(f ∗ g)(x) = h(x) = .
π

a+b

− −−−−
√ e− ab

a+b
x2

f(t)

(ω)f̂

9.6.11

9.6.11 f(t) (ω)f̂
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There are many ways to filter out unwanted frequencies. The simplest would be to just drop all of the high (angular) frequencies.
For example, for some cutoff frequency  frequencies  will be removed. The Fourier transform of the filtered signal
would then be zero for . This could be accomplished by multiplying the Fourier transform of the signal by a function that
vanishes for . For example, we could use the gate function

as shown in Figure .

Figure : (a) Plot of the Fourier transform  of a signal. (b) The gate function  used to filter out high frequencies.
(c) The product of the functions, , in (a) and (b) shows how the filters cuts out high frequencies, .

In general, we multiply the Fourier transform of the signal by some filtering function  to get the Fourier transform of the
filtered signal,

The new signal,  is then the inverse Fourier transform of this product, giving the new signal as a convolution:

Such processes occur often in systems theory as well. One thinks of  as the input signal into some filtering device which in turn
produces the output, . The function  is called the impulse response. This is because it is a response to the impulse function,

. In this case, one has

ω0 |ω| > ω0

|ω| > ω0

|ω| > ω0

(ω) ={ ,pω0

1,

0,

|ω| ≤ ω0

|ω| > ω0
(9.6.14)

9.6.12

9.6.12 f(ω) (ω)pω0

(ω) = (ω) (ω)ĝ f̂ pω0 |ω| > ω0

(t)ĥ

(ω) = (ω) (ω).ĝ f̂ ĥ

g(t)

g(t) = [ (ω) (ω)] = h(t−τ)f(τ)dτ .F −1 f̂ ĥ ∫
∞

−∞
(9.6.15)

f(t)
g(t) h(t)

δ(t)
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Another application of the convolution is in windowing. This represents what happens when one measures a real signal. Real
signals cannot be recorded for all values of time. Instead data is collected over a finite time interval. If the length of time the data is
collected is , then the resulting signal is zero outside this time interval. This can be modeled in the same way as with filtering,
except the new signal will be the product of the old signal with the windowing function. The resulting Fourier transform of the new
signal will be a convolution of the Fourier transforms of the original signal and the windowing function.

We return to the finite wave train in Example 9.5.6 given by

Solution
We can view this as a windowed version of  t obtained by multiplying  by the gate function

This is shown in Figure . Then, the Fourier transform is given as a convolution,

Note that the convolution in frequency space requires the extra factor of .

Figure : A plot of the finite wave train.

h(t−τ)δ(τ)dτ = h(t).∫
∞

−∞

T

 Example : Finite Wave Train, Revisited9.6.7

h(t) ={ .
cos t,ω0

0,

|t| ≤ a

|t| > a

f(t) = cosω0 f(t)

(t) ={ga
1,

0,

|x| ≤ a

|x| > a
(9.6.16)

9.6.13

(ω)ĥ = ( ∗ ) (ω)f̂ ĝa

= (ω−v) (v)dv.
1

2π
∫

∞

−∞
f̂ ĝa (9.6.17)

1/(2π)
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The convolution in spectral space is defined with an extra factor of  so as to preserve the idea that the inverse Fourier
transform of a convolution is the product of the corresponding signals.

We need the Fourier transforms of  and  in order to finish the computation. The Fourier transform of the box function was
found in Example 9.5.2 as

The Fourier transform of the cosine function, , is

Note that we had earlier computed the inverse Fourier transform of this function in Example 9.5.5.

Inserting these results in the convolution integral, we have

This is the same result we had obtained in Example 9.5.6.

Parseval’s Equality

The integral/sum of the (modulus) square of a function is the integral/sum of the (modulus) square of the transform.

As another example of the convolution theorem, we derive Parseval’s Equality (named after Marc-Antoine Parseval (1755-1836)):

This equality has a physical meaning for signals. The integral on the left side is a measure of the energy content of the signal in the
time domain. The right side provides a measure of the energy content of the transform of the signal. Parseval’s equality, is simply a
statement that the energy is invariant under the Fourier transform. Parseval’s equality is a special case of Plancherel’s formula
(named after Michel Plancherel, 1885-1967).

Let’s rewrite the Convolution Theorem in its inverse form

Then, by the definition of the inverse Fourier transform, we have

Setting ,

 Note

1/2π

f ga

(ω) = sinωa. ĝa
2

ω

f(t) = cos tω0

(ω)f̂ = cos( t) dt∫
∞

−∞
ω0 eiωt

= ( + ) dt∫
∞

−∞

1

2
ei tω0 e−i tω0 eiωt

= ( + )dt
1

2
∫

∞

−∞
ei(ω+ )tω0 ei(ω− )tω0

= π [δ (ω+ ) +δ (ω− )]ω0 ω0 (9.6.18)

(ω)ĥ = (ω−v) (v)dv
1

2π
∫

∞

−∞
f̂ ĝa

= π [δ (ω−v+ ) +δ (ω−v− )] sinvadv
1

2π
∫

∞

−∞
ω0 ω0

2

v

= + .
sin(ω+ )aω0

ω+ω0

sin(ω− )aω0

ω−ω0
(9.6.19)

 Note

|f(t) dt = | (ω) dω.∫
∞

−∞
|2

1

2π
∫

∞

−∞
f̂ |2 (9.6.20)

[ (k) (k)] = (f ∗ g)(t).F −1 f̂ ĝ (9.6.21)

f(t−u)g(u)du = (ω) (ω) dω.∫
∞

−∞

1

2π
∫

∞

−∞
f̂ ĝ e−iωt

t = 0
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Now, let , or . We note that the Fourier transform of  is related to the Fourier transform of  :

So, inserting this result into Equation , we find that

which yields Parseval’s Equality in the form  after substituting  on the left.

As noted above, the forms in Equations  and  are often referred to as the Plancherel formula or Parseval formula.
A more commonly defined Parseval equation is that given for Fourier series. For example, for a function  defined on ,
which has a Fourier series representation, we have

In general, there is a Parseval identity for functions that can be expanded in a complete sets of orthonormal functions, 
, which is given by

Here . The Fourier series example is just a special case of this formula.

This page titled 9.6: The Convolution Operation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.

f(−u)g(u)du = (ω) (ω)dω.∫
∞

−∞

1

2π
∫

∞

−∞
f̂ ĝ (9.6.22)

g(t) = f(−t)¯ ¯¯̄¯̄¯̄ ¯̄ ¯̄
f(−t) = g(t)¯ ¯¯̄¯̄¯̄

g(t) f(t)

(ω)ĝ = dt∫
∞

−∞
f(−t)¯ ¯¯̄¯̄¯̄ ¯̄ ¯̄

eiωt

= − dτ∫
−∞

∞
f(τ)e−iωτ¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄

= f(τ) dτ = (ω).∫
∞

−∞
eiωτ f̄ (9.6.23)

(9.6.22)

f(−u) du = | (ω) dω∫
∞

−∞
f(−u)¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄¯ 1

2π
∫

∞

−∞
f̂ |2

(9.6.20) t = −u

(9.6.20) (9.6.22)
f(x) [−π, π]

+ ( + ) = [f(x) dx.
a2

0

2
∑
n=1

∞

a2
n b2

n

1

π
∫

π

−π

]2

{ (x)} ,n = 1, 2, …ϕn
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∞

ϕn >2 ∥2
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9.7: The Laplace Transform
Up to this point we have only explored Fourier exponential transforms as one type of integral transform. The Fourier transform is
useful on infinite domains. However, students are often introduced to another integral transform, called the Laplace transform, in
their introductory differential equations class. These transforms are defined over semi-infinite domains and are useful for solving
initial value problems for ordinary differential equations.

The Laplace transform is named after Pierre-Simon de Laplace (  ). Laplace made major contributions, especially
to celestial mechanics, tidal analysis, and probability.

Integral transform on  with respect to the integral kernel, .

The Fourier and Laplace transforms are examples of a broader class of transforms known as integral transforms. For a function 
 defined on an interval , we define the integral transform

where  is a specified kernel of the transform. Looking at the Fourier transform, we see that the interval is stretched over the
entire real axis and the kernel is of the form, . In Table  we show several types of integral transforms.

Table : A table of common integral transforms.
Laplace Transform

Fourier Transform

Fourier Cosine Transform

Fourier Sine Transform

Mellin Transform

Hankel Transform

It should be noted that these integral transforms inherit the linearity of integration. Namely. let , where 
and  are constants. Then,

Therefore, we have shown linearity of the integral transforms. We have seen the linearity property used for Fourier transforms and
we will use linearity in the study of Laplace transforms.

The Laplace transform of .

We now turn to Laplace transforms. The Laplace transform of a function  is defined as

 Note

1749 −1827

 Note

[a, b] K(x, k)

f(x) (a, b)

F (k) = K(x, k)f(x)dx,∫
b

a

K(x, k)

K(x, k) = eikx 9.7.1

9.7.1

F(s) = f(x)dx∫ ∞
0 e−sx

F(k) = f(x)dx∫ ∞
−∞ eikx

F(k) = cos(kx)f(x)dx∫ ∞
0

F(k) = sin(kx)f(x)dx∫ ∞
0

F(k) = f(x)dx∫ ∞
0 xk−1

F(k) = x (kx)f(x)dx∫ ∞
0 Jn

h(x) = αf(x) +βg(x) α

β

H(k) = K(x, k)h(x)dx,∫
b

a

= K(x, k)(αf(x) +βg(x))dx,∫
b

a

= α K(x, k)f(x)dx+β K(x, k)g(x)dx,∫
b

a

∫
b

a

= αF (x) +βG(x). (9.7.1)

 Note

f ,F = L[f ]

f(t)

F (s) = L[f ](s) = f(t) dt, s > 0.∫
∞

0

e−st (9.7.2)
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This is an improper integral and one needs

to guarantee convergence.

Laplace transforms also have proven useful in engineering for solving circuit problems and doing systems analysis. In Figure 
it is shown that a signal  is provided as input to a linear system, indicated by . One is interested in the system output, ,
which is given by a convolution of the input and system functions. By considering the transforms of  and , the transform
of the output is given as a product of the Laplace transforms in the s-domain. In order to obtain the output, one needs to compute a
convolution product for Laplace transforms similar to the convolution operation we had seen for Fourier transforms earlier in the
chapter. Of course, for us to do this in practice, we have to know how to compute Laplace transforms.

Figure : A schematic depicting the use of Laplace transforms in systems theory.

Properties and Examples of Laplace Transforms
It is typical that one makes use of Laplace transforms by referring to a Table of transform pairs. A sample of such pairs is given in
Table . Combining some of these simple Laplace transforms with the properties of the Laplace transform, as shown in Table 

, we can deal with many applications of the Laplace transform. We will first prove a few of the given Laplace transforms and
show how they can be used to obtain new transform pairs. In the next section we will show how these transforms can be used to
sum infinite series and to solve initial value problems for ordinary differential equations.

Table : Table of selected Laplace transform pairs.

We begin with some simple transforms. These are found by simply using the definition of the Laplace transform.

Show that .

Solution

f(t) = 0lim
t→∞

e−st

9.7.1

x(t) h(t) y(t)

x(t) h(t)

9.7.1

9.7.2

9.7.3

9.7.2

f(t) F(s) f(t) F(s)

c c
s

eat s > a1
s−a′

tn ,s > 0n!
sn+1 tneat

n!

(s−a)n+1

sinωt
ω

+s2 ω2 sinωteat
ω

(s−a +)2
ω2

cosωt
s

+s2 ω2 cosωteat
s−a

(s−a +)2
ω2

tsinωt
2ωs

( + )s2 ω2 2 tcosωt
−s2 ω2

( + )s2 ω2 2

sinhat
a

−s2 a2 coshat
s

−s2 a2

H(t− a) ,s > 0e−as

s
δ(t− a) ,a ≥ 0,s > 0e−as

 Example 9.7.1

L[1] = 1
ς
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For this example, we insert  into the definition of the Laplace transform:

This is an improper integral and the computation is understood by introducing an upper limit of a and then letting . We
will not always write this limit, but it will be understood that this is how one computes such improper integrals. Proceeding
with the computation, we have

Thus, we have found that the Laplace transform of 1 is . This result can be extended to any constant , using the linearity of

the transform, . Therefore,

Show that , for .

Solution
For this example, we can easily compute the transform. Again, we only need to compute the integral of an exponential
function.

Note that the last limit was computed as . This is only true if a , or  a. [Actually, a could be
complex. In this case we would only need s to be greater than the real part of 

Show that  and .

Solution
For these examples, we could again insert the trigonometric functions directly into the transform and integrate. For example,

f(t) = 1

L[1] = dt∫
∞

0

e−st

a → ∞

L[1] = dt∫
∞

0

e−st

= dtlim
a→∞

∫
a

0

e−st

= lim
a→∞

(− )
1

s
e−st

a

0

= (− + ) = .lim
a→∞

1

s
e−sa 1

s

1

s
(9.7.3)

1
1

S

c

L[c] = cL[1]

L[c] = .
c

s

 Example 9.7.2

L [ ] =eat 1
s−a

s > a

L [ ]eat = dt∫
∞

0

eate−st

= dt∫
∞

0

e(a−s)t

=( )
1

a−s
e(a−s)t

∞

0

= − = .lim
t→∞

1

a−s
e(a−s)t 1

a−s

1

s−a
(9.7.4)

= 0limt→∞ e(a−s)t −s < 0 s >

a, s > Re(a).1

 Example 9.7.3

L[cosat] = s

+s2 a2 L[sinat] = a

+s2 a2

L[cosat] = cosatdt.∫
∞

0

e−st
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Recall how one evaluates integrals involving the product of a trigonometric function and the exponential function. One
integrates by parts two times and then obtains an integral of the original unknown integral. Rearranging the resulting integral
expressions, one arrives at the desired result. However, there is a much simpler way to compute these transforms.

Recall that  at. Making use of the linearity of the Laplace transform, we have

Thus, transforming this complex exponential will simultaneously provide the Laplace transforms for the sine and cosine
functions!

The transform is simply computed as

Note that we could easily have used the result for the transform of an exponential, which was already proven. In this case 
.

We now extract the real and imaginary parts of the result using the complex conjugate of the denominator:

Reading off the real and imaginary parts, we find the sought transforms,

Show that .

Solution
For this example we evaluate

This integral can be evaluated using the method of integration by parts:

Show that  for nonnegative integer .

Solution

We have seen the  and  cases:  and . We now generalize these results to nonnegative integer
powers, , of . We consider the integral

= cosat+ i sineiat 

L [ ] = L[cosat] + iL[sinat].eiat

L [ ] = dt = dt = .eiat ∫
∞

0

eiate−st ∫
∞

0

e−(s−ia)t 1

s− ia

s > Re(ia) = 0

= = .
1

s− ia

1

s− ia

s+ ia

s+ ia

s+ ia

+s2 a2

L[cosat]

L[sinat]

=
s

+s2 a2

= .
a

+s2 a2
(9.7.5)

 Example 9.7.4

L[t] = 1
s2

L[t] = t dt∫
∞

0

e−st

t dt∫
∞

0

e−st = − + dtt
1

s
e−st ∣

∣
∣
∞

0

1

s
∫

∞

0

e−st

= .
1

s2
(9.7.6)

 Example 9.7.5

L [ ] =tn n!
+1sn

n

n = 0 n = 1 L[1] = 1
s L[t] = 1

s2

n > 1 t

L [ ] = dt.tn ∫
∞

0

tne−st
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Following the previous example, we again integrate by parts:

We could continue to integrate by parts until the final integral is computed. However, look at the integral that resulted after one
integration by parts. It is just the Laplace transform of . So, we can write the result as

We compute  by turning it into an initial value problem for a first order difference equation and finding the
solution using an iterative method.

This is an example of a recursive definition of a sequence. In this case we have a sequence of integrals. Denoting

and noting that , we have the following:

This is also what is called a difference equation. It is a first order difference equation with an "initial condition," . The next
step is to solve this difference equation.

Finding the solution of this first order difference equation is easy to do using simple iteration. Note that replacing  with 
, we have

Repeating the process, we find

We can repeat this process until we get to , which we know. We have to carefully count the number of iterations. We do this
by iterating  times and then figure out how many steps will get us to the known initial value. A list of iterates is easily written
out:

1

dt∫
∞

0

tne−st = − + dttn
1

s
e−st ∣

∣
∣
∞

0

n

s
∫

∞

0

t−ne−st

= dt.
n

s
∫

∞

0

t−ne−st (9.7.7)

tn−1

L [ ] = L [ ] .tn
n

s
tn−1

 Note

dt∫ ∞

0
tne−st

= L [ ] = dtIn tn ∫
∞

0
tne−st

= L[1] =I0
1
s

= , = .In
n

s
In−1 I0

1

s
(9.7.8)

I0

n

n−1

= . In−1
n−1

s
In−2

In =
n

s
In−1

= ( )
n

s

n−1

s
In−2

=
n(n−1)

s2
In−2

=
n(n−1)(n−2)
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I0

k

In =
n

s
In−1

=
n(n−1)

s2
In−2

=
n(n−1)(n−2)

s3
In−3

= …
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Since we know , we choose to stop at  obtaining

Therefore, we have shown that .

Such iterative techniques are useful in obtaining a variety of integrals, such as 

This integral can just as easily be done using differentiation. We note that

Since

As a final note, one can extend this result to cases when  is not an integer. To do this, we use the Gamma function, which was
discussed in Section 5.4. Recall that the Gamma function is the generalization of the factorial function and is defined as

Note the similarity to the Laplace transform of  :

For  an integer and , we have that

Thus, the Gamma function can be viewed as a generalization of the factorial and we have shown that

for .

Now we are ready to introduce additional properties of the Laplace transform in Table . We have already discussed the first
property, which is a consequence of linearity of the integral transforms. We will prove the other properties in this and the following
sections.

Table : Table of selected Laplace transform properties.
Laplace Transform Properties

=I0
1
s

k = n

= = .In
n(n−1)(n−2) … (2)(1)

sn
I0

n!

sn+1

L [ ] =tn n!

sn+1

= dx.In ∫
∞

−∞ x2ne−x2

 Note

dt = dt.(− )
d

ds

n

∫
∞

0

e−st ∫
∞

0

tne−st

dt = ,∫
∞

0

e−st 1

s

dt = = .∫
∞

0

tne−st (− )
d

ds

n
1

s

n!

sn+1

n

Γ(x) = dt.∫
∞

0
tx−1e−t (9.7.11)

tx−1

L [ ] = dt.tx−1 ∫
∞

0

tx−1e−st

x−1 s = 1

Γ(x) = (x−1)!. 

L [ ] =tp
Γ(p+1)

sp+1

p > −1

9.7.3

9.7.3

L[af(t) + bg(t)] = aF(s) + bG(s)

L[tf(t)] = − F(s)d

ds

L[ ] = sF(s) − f(0)
df

dt

L[ ] = F(s) − sf(0) − (0)
fd

2

dt2
s2 f ′

L [ f(t)] = F(s− a)eat

L[H(t− a)f(t− a)] = F(s)e−as
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Laplace Transform Properties

Show that .

Solution
We have to compute

We can move the derivative off  by integrating by parts. This is similar to what we had done when finding the Fourier
transform of the derivative of a function. Letting  and , we have

Here we have assumed that  vanishes for large .

The final result is that

Show that .

Solution
We can compute this Laplace transform using two integrations by parts, or we could make use of the last result. Letting 

, we have

But,

So,

We will return to the other properties in Table  after looking at a few applications.

L[(f ∗ g)(t)] = L[ f(t− u)g(u)du] = F(s)G(s)∫ t

0

 Example 9.7.6

L[ ] = sF (s) −f(0)
df

dt

L[ ] = dt.
df

dt
∫

∞

0

df

dt
e−st

f

u = e−st v= f(t)

L[ ]
df

dt
= dt∫

∞

0

df

dt
e−st

= +s f(t) dtf(t)e−st ∣∣
∞

0
∫

∞

0

e−st

= −f(0) +sF (s). (9.7.12)

f(t)e−st  t

L[ ] = sF (s) −f(0).
df

dt

 Example 9.7.7

L[ ] = F (s) −sf(0) − (0)
fd2

dt2
s2 f ′

g(t) =
df(t)

dt

L[ ] = L[ ] = sG(s) −g(0) = sG(s) − (0).
fd2

dt2

dg

dt
f ′

G(s) = L[ ] = sF (s) −f(0)
df

dt

L[ ]
fd2

dt2
= sG(s) − (0)f ′

= s[sF (s) −f(0)] − (0)f ′

= F (s) −sf(0) − (0).s2 f ′ (9.7.13)
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9.8: Applications of Laplace Transforms
Although the Laplace transform is a very useful transform, it is often encountered only as a method for solving initial value
problems in introductory differential equations. In this section we will show how to solve simple differential equations. Along the
way we will introduce step and impulse functions and show how the Convolution Theorem for Laplace transforms plays a role in
finding solutions. However, we will first explore an unrelated application of Laplace transforms. We will see that the Laplace
transform is useful in finding sums of infinite series.

Series Summation Using Laplace Transforms
We saw in Chapter ?? that Fourier series can be used to sum series. For example, in Problem ??.13, one proves that

In this section we will show how Laplace transforms can be used to sum series.  There is an interesting history of using integral
transforms to sum series. For example, Richard Feynman   described how one can use the convolution theorem for
Laplace transforms to sum series with denominators that involved products. We will describe this and simpler sums in this section.

Albert D. Wheelon, Tables of Summable Series and Integrals Involving Bessel Functions, Holden-Day, 1968.

R. P. Feynman, 1949 , Phys. Rev. . 769

We begin by considering the Laplace transform of a known function,

Inserting this expression into the sum  and interchanging the sum and integral, we find

The last step was obtained using the sum of a geometric series. The key is being able to carry out the final integral as we show in
the next example.

Evaluate the sum .

Solution
Since, , we have

= .∑
n=1

∞ 1

n2

π2

6

1

2 (1918 −1988)

 Note

 Note

76, p

F (s) = f(t) dt.∫
∞

0

e−st

F (n)∑n

F (n)∑
n=0

∞

= f(t) dt∑
n=0

∞

∫
∞

0

e−nt

= f(t) dt∫
∞

0

∑
n=0

∞

( )e−t n

= f(t) dt.∫
∞

0

1

1 −e−t
(9.8.1)

 Example 9.8.1
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Evaluate the sum .

Solution
This is a special case of the Riemann zeta function

The Riemann zeta function  is important in the study of prime numbers and more recently has seen applications in the study of
dynamical systems. The series in this example is . We have already seen in ??.13 that

Using Laplace transforms, we can provide an integral representation of .

The first step is to find the correct Laplace transform pair. The sum involves the function . So, we look for a
function  whose Laplace transform is . We know by now that the inverse Laplace transform of 
is . As before, we replace each term in the series by a Laplace transform, exchange the summation and integration, and
sum the resulting geometric series:

So, we have that

Integrals of this type occur often in statistical mechanics in the form of Bose-Einstein integrals. These are of the form

Note that .

A translation of Riemann, Bernhard (1859), "Über die Anzahl der Primzahlen unter einer gegebenen Grösse" is in H. M.
Edwards (1974). Riemann’s Zeta Function. Academic Press. Riemann had shown that the Riemann zeta function can be

obtained through contour integral representation,  , for a specific contour .

In general the Riemann zeta function has to be tabulated through other means. In some special cases, one can closed form
expressions. For example,

∑
n=1

∞ (−1)n+1

n
= (−1 dt∑

n=1

∞

∫
∞

0
)n+1e−nt

= dt∫
∞

0

e−t

1 +e−t

= = ln2∫
2

1

du

u
(9.8.2)

 Example 9.8.2

∑∞
n=1

1

n2

ζ(s) = .∑
n=1

∞ 1

ns
(9.8.3)

3

ζ(2)

ζ(2) = .
π2

6

ζ(2)

F (n) = 1/n2

f(t) F (s) = 1/s2 F (s) = 1/s2

f(t) = t

∑
n=1

∞ 1

n2
= t dt∑

n=1

∞

∫
∞

0

e−nt

= dt.∫
∞

0

t

−1et
(9.8.4)

dt = = ζ(2)∫
∞

0

t

−1et
∑
n=1

∞ 1

n2

(z) = dx.Gn ∫
∞

0

xn−1

−1z−1ex

(1) = Γ(n)ζ(n)Gn

 Note

2 sin(πs)Γζ(s) = i dx∮
C

(−x)s−1

−1ex
C
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where the  ’s are the Bernoulli numbers. Bernoulli numbers are defined through the Maclaurin series expansion

The first few Riemann zeta functions are

We can extend this method of using Laplace transforms to summing series whose terms take special general forms. For example,
from Feynman’s 1949 paper we note that

This identity can be shown easily by first noting

Now, differentiate the result with respect to  and the result follows.

The latter identity can be generalized further as

In Feynman’s 1949 paper, he develops methods for handling several other general sums using the convolution theorem. Wheelon
gives more examples of these. We will just provide one such result and an example. First, we note that

However,

So, we have

We see in the next example how this representation can be useful.

Evaluate .

Solution
We sum this series by first letting  and  in the formula for . Collecting the -dependent terms, we
can sum the series leaving a double integral computation in ut-space. The details are as follows:

ζ(2n) = ,
22n−1π2n

(2n)!
Bn

Bn

= .
x

−1ex
∑
n=0

∞ Bn

n!
xn

ζ(2) = , ζ(4) = , ζ(6) = .
π2

6

π4

90

π6

945

= − ds.
1

(a+bn)2

∂

∂a
∫

∞

0

e−s(a+bn)

ds = = .∫
∞

0

e−s(a+bn) [ ]
−e−s(a+bn)

a+bn

∞

0

1

a+bn

a

= ds.
1

(a+bn)k+1

(−1)k

k!

∂k

∂ak
∫

∞

0

e−s(a+bn)

= .
1

ab
∫

1

0

du

[a(1 −u) +bu]2

= t dt.
1

[a(1 −u) +bu]2
∫

∞

0

e−t[a(1−u)+bu]

= du t dt.
1

ab
∫

1

0

∫
∞

0

e−t[a(1−u)+bu]

 Example 9.8.3

∑∞
n=0

1
(2n+1)(2n+2)

a = 2n+1 b = 2n+2 1/ab n
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Solution of ODEs Using Laplace Transforms
One of the typical applications of Laplace transforms is the solution of nonhomogeneous linear constant coefficient differential
equations. In the following examples we will show how this works.

The general idea is that one transforms the equation for an unknown function  into an algebraic equation for its transform, 
. Typically, the algebraic equation is easy to solve for  as a function of . Then, one transforms back into -space using

Laplace transform tables and the properties of Laplace transforms. The scheme is shown in Figure .

Figure : The scheme for solving an ordinary differential equation using Laplace transforms. One transforms the initial value
problem for  and obtains an algebraic equation for . Solve for  and the inverse transform give the solution to the
initial value problem.

Solve the initial value problem .

Solution
The first step is to perform a Laplace transform of the initial value problem. The transform of the left side of the equation is

∑
n=0

∞
1

(2n+1)(2n+2)
=∑

n=0

∞

∫
1

0

du

[(2n+1)(1 −u) +(2n+2)u]2

= du t dt∑
n=0

∞

∫
1

0

∫
∞

0

e−t(2n+1+u)

= du t dt∫
1

0

∫
∞

0

e−t(1+u) ∑
n=0

∞

e−2nt

= dudt∫
∞

0

te−t

1 −e−2t
∫

1

0

e−tu

= dt∫
∞

0

te−t

1 −e−2t

1 −e−t

t

= dt∫
∞

0

e−t

1 +e−t

= − = ln2ln(1 + )e−t ∣∣
∞

0
(9.8.5)

y(t)

Y (t) Y (s) s t

9.8.1

9.8.1
y(t) Y (s) Y (s)

 Example 9.8.4

+3y = , y(0) = 1y′ e2t
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Transforming the right hand side, we have

Combining these two results, we obtain

The next step is to solve for  :

Now, we need to find the inverse Laplace transform. Namely, we need to figure out what function has a Laplace transform of
the above form. We will use the tables of Laplace transform pairs. Later we will show that there are other methods for carrying
out the Laplace transform inversion.

The inverse transform of the first term is . However, we have not seen anything that looks like the second form in the table
of transforms that we have compiled; but, we can rewrite the second term by using a partial fraction decomposition. Let’s recall
how to do this.

The goal is to find constants,  and , such that

We picked this form because we know that recombining the two will have the same denominator. We just need to make sure
the afterwards. So, adding the two terms, we have

Equating numerators,

There are several ways to proceed at this point.

This is an example of carrying out a partial fraction decomposition.

a. Method 1. 
We can rewrite the equation by gathering terms with common powers of , we have

The only way that this can be true for all  is that the coefficients of the different powers of s agree on both sides. This
leads to two equations for  and  :

The first equation gives , so the second equation becomes . The solution is then .
b. Method 2. 

Since the equation  is true for all , we can pick specific values. For , we find , or 

. For , we find , or . Thus, we obtain the same result as Method 1, but much quicker.
c. Method 3. 

We could just inspect the original partial fraction problem. Since the numerator has no  terms, we might guess the form

L [ ] =e2t 1

s−2

(s+3)Y −1 = . 
1

s−2

Y (s)

Y (s) = + .
1

s+3

1

(s−2)(s+3)

e−3t

A B

= + . 
1

(s−2)(s+3)

A

s−2

B

s+3
(9.8.6)

= .
1

(s−2)(s+3)

A(s+3) +B(s−2)

(s−2)(s+3)

1 = A(s+3) +B(s−2).

 Note

s

(A+B)s+3A−2B = 1.

s

A B

A+B = 0

3A−2B = 1.
(9.8.7)

A = −B −5B = 1 A = −B = 1
5

= +1
(s−2)(s+3)

A
s−2

B
s+3

s s = 2 1 = 5A

A = 1
5

s = −3 1 = −5B B = − 1
5

s

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90977?pdf


9.8.6 https://math.libretexts.org/@go/page/90977

But, recombining the terms on the right hand side, we see that

Since we were off by 5 , we divide the partial fractions by 5 to obtain

which once again gives the desired form.

Figure : A plot of the solution to Example .

Returning to the problem, we have found that

We can now see that the function with this Laplace transform is given by

works. Simplifying, we have the solution of the initial value problem

We can verify that we have solved the initial value problem.

and .

= − .
1

(s−2)(s+3)

1

s−2

1

s+3

− = . 
1

s−2

1

s+3

5

(s−2)(s+3)

= [ − ] , 
1

(s−2)(s+3)

1

5

1

s−2

1

s+3

9.8.2 9.8.4

Y (s) = + ( − ) .
1

s+3

1

5

1

s−2

1

s+3

y(t) = [ + ( − )] = + ( − )L
−1 1

s+3

1

5

1

s−2

1

s+3
e−3t 1

5
e2t e−3t

y(t) = + .
1

5
e2t 4

5
e−3t

+3y = − +3( + ) =y′ 2

5
e2t 12

5
e−3t 1

5
e2t 4

5
e−3t e2t

y(0) = + = 11
5

4
5
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Solve the initial value problem .

Solution
We can probably solve this without Laplace transforms, but it is a simple exercise. Transforming the equation, we have

Solving for , we have

We now ask if we recognize the transform pair needed. The denominator looks like the type needed for the transform of a sine
or cosine. We just need to play with the numerator. Splitting the expression into two terms, we have

The first term is now recognizable as the transform of . The second term is not the transform of . It would be if the
numerator were a 2 . This can be corrected by multiplying and dividing by 2:

The solution is then found as

The reader can verify that this is the solution of the initial value problem.

Figure : A plot of the solution to Example .

 Example 9.8.5

+4y = 0, y(0) = 1, (0) = 3y′′ y′

0 = Y −sy(0) − (0) +4Ys2 y′

= ( +4)Y −s−3.s2 (9.8.8)

Y

Y (s) = .
s+3

+4s2

Y (s) = + .
s

+4s2

3

+4s2

cos 2t sin2t

= ( ) . 
3

+4s2

3

2

2

+4s2

y(t) = [ + ( )] = cos 2t+ sin2t.L
−1 s

+4s2

3

2

2

+4s2

3

2

9.8.3 9.8.5
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Step and Impulse Functions
Often the initial value problems that one faces in differential equations courses can be solved using either the Method of
Undetermined Coefficients or the Method of Variation of Parameters. However, using the latter can be messy and involves some
skill with integration. Many circuit designs can be modeled with systems of differential equations using Kirchoff’s Rules. Such
systems can get fairly complicated. However, Laplace transforms can be used to solve such systems and electrical engineers have
long used such methods in circuit analysis.

In this section we add a couple of more transform pairs and transform properties that are useful in accounting for things like turning
on a driving force, using periodic functions like a square wave, or introducing impulse forces.

We first recall the Heaviside step function, given by

A more general version of the step function is the horizontally shifted step function, . This function is shown in Figure 
. The Laplace transform of this function is found for  as

Figure : A shifted Heaviside function, .

Just like the Fourier transform, the Laplace transform has two shift theorems involving the multiplication of the function, , or
its transform, , by exponentials. The first and second shifting properties/theorems are given by

We prove the First Shift Theorem and leave the other proof as an exercise for the reader. Namely,

H(t) ={ 0,
1,

t < 0,
t > 0.

(9.8.9)

H(t−a)

9.8.4 a > 0

L[H(t−a)] = H(t−a) dt∫
∞

0

e−st

= dt∫
∞

a

e−st

= = .
e−st

s

∣

∣
∣
∞

a

e−as

s
(9.8.10)

9.8.4 H(t−a)

f(t)

F (s)

L [ f(t)]eat

L[f(t−a)H(t−a)]

= F (s−a)

= F (s)e−as

(9.8.11)

(9.8.12)

L [ f(t)]eat = f(t) dt∫
∞

0

eat e−st

= f(t) dt = F (s−a).∫
∞

0

e−(s−a)t (9.8.13)
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Compute the Laplace transform of .

Solution
This function arises as the solution of the underdamped harmonic oscillator. We first note that the exponential multiplies a sine
function. The shift theorem tells us that we first need the transform of the sine function. So, for , we have

Using this transform, we can obtain the solution to this problem as

More interesting examples can be found using piecewise defined functions. First we consider the function . For 
 both terms are zero. In the interval  the function  and . Therefore,  for 

. Finally, for , both functions are one and therefore the difference is zero. The graph of  is shown
in Figure .

Figure : The box function, .

We now consider the piecewise defined function

This function can be rewritten in terms of step functions. We only need to multiply  by the above box function,

We depict this in Figure .

Figure : Formation of a piecewise function, .

 Example 9.8.6

sinωte−at

f(t) = sinωt

F (s) = .
ω

+s2 ω2

L [ sinωt] = F (s+a) = .e−at ω

(s+a +)2 ω2

H(t) −H(t−a)

t < 0 [0, a] H(t) = 1 H(t−a) = 0 H(t) −H(t−a) = 1

t ∈ [0, a] t > a H(t) −H(t−a)

9.8.5

9.8.5 H(t) −H(t−a)

g(t) ={
f(t),

0,

0 ≤ t ≤ a,

t < 0, t > a.

f(t)

g(t) = f(t)[H(t) −H(t−a)]

9.8.6

9.8.6 f(t)[H(t) −H(t−a)]
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Even more complicated functions can be written in terms of step functions. We only need to look at sums of functions of the form 
 for . This is similar to a box function. It is nonzero between  and  has height .

We show as an example the square wave function in Figure . It can be represented as a sum of an infinite number of boxes,

for .

Figure : A square wave,  

Find the Laplace Transform of a square wave "turned on" at 

Solution
We let

Using the properties of the Heaviside function, we have

Note that the third line in the derivation is a geometric series. We summed this series to get the answer in a compact form since
.

Other interesting examples are provided by the delta function. The Dirac delta function can be used to represent a unit impulse.
Summing over a number of impulses, or point sources, we can describe a general function as shown in Figure . The sum of
impulses located at points  with strengths  would be given by

A continuous sum could be written as

f(t)[H(t−a) −H(t−b)] b > a a b f(t)

9.8.7

f(t) = [H(t−2na) −H(t−(2n+1)a)],∑
n=−∞

∞

a > 0

9.8.7 f(t) = [H(t− 2na) −H(t− (2n+ 1)a)].∑∞
n=−∞

 Example 9.8.7

t = 0.

f(t) = [H(t−2na) −H(t−(2n+1)a)], a > 0.∑
n=0

∞

L[f(t)] = [L[H(t−2na)] −L[H(t−(2n+1)a)]]∑
n=0

∞

= [ − ]∑
n=0

∞ e−2nas

s

e−(2n+1)as

s

=
1 −e−as

s
∑
n=0

∞

( )e−2as n

= ( )
1 −e−as

s

1

1 −e−2as

=
1 −e−as

s (1 − )e−2as
(9.8.14)

< 1e−2as

9.8.8

, i = 1, … ,nai f ( )ai

f(x) = f ( ) δ (x− ) .∑
i=1

n

ai ai
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This is simply an application of the sifting property of the delta function. We will investigate a case when one would use a single
impulse. While a mass on a spring is undergoing simple harmonic motion, we hit it for an instant at time . In such a case, we
could represent the force as a multiple of .

Figure : Plot representing impulse forces of height . The sum  describes a general impulse
function.

One would then need the Laplace transform of the delta function to solve the associated initial value problem. Inserting the delta
function into the Laplace transform, we find that for 

Solve the initial value problem  .

Solution
This initial value problem models a spring oscillation with an impulse force. Without the forcing term, given by the delta
function, this spring is initially at rest and not stretched. The delta function models a unit impulse at . Of course, we
anticipate that at this time the spring will begin to oscillate. We will solve this problem using Laplace transforms.

First, we transform the differential equation:

Inserting the initial conditions, we have

Solving for , we obtain

f(x) = f(ξ)δ(x−ξ)dξ.∫
∞

−∞

t = a

δ(t−a)

9.8.8 f ( )ai f ( ) δ (x− )∑n
i=1 ai ai

 Note

L[δ(t−a)] = .e−as

a > 0

L[δ(t−a)] = δ(t−a) dt∫
∞

0

e−st

= δ(t−a) dt∫
∞

−∞
e−st

= .e−as (9.8.15)

 Example 9.8.8

+4 y = δ(t−2), y(0) =y′′ π2 (0) = 0y′

t = 2

Y −sy(0) − (0) +4 Y = .s2 y′ π2 e−2s

( +4 )Y = . s2 π2 e−2s

Y (s)

Y (s) = .
e−2s

+4s2 π2
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We now seek the function for which this is the Laplace transform. The form of this function is an exponential times some
Laplace transform, . Thus, we need the Second Shift Theorem since the solution is of the form  for

We need to find the corresponding  of the Laplace transform pair. The denominator in  suggests a sine or cosine.
Since the numerator is constant, we pick sine. From the tables of transforms, we have

So, we write

This gives .

We now apply the Second Shift Theorem, , or

This solution tells us that the mass is at rest until  and then begins to oscillate at its natural frequency. A plot of this
solution is shown in Figure .

Figure : A plot of the solution to Example  in which a spring at rest experiences an impulse force at .

Solve the initial value problem

where

F (s) Y (s) = F (s)e−2s

F (s) = .
1

+4s2 π2

f(t) F (s)

L[sin2πt] = .
2π

+4s2 π2

F (s) = .
1

2π

2π

+4s2 π2

f(t) = (2π sin2πt)−1

L[f(t−a)H(t−a)] = F (s)e−as

y(t) = [ F (s)]L
−1 e−2s

= H(t−2)f(t−2)

= H(t−2) sin2π(t−2).
1

2π
(9.8.16)

t = 2

9.8.9

9.8.9 9.8.8 t = 2

 Example 9.8.9

+y = f(t), y(0) = 0, (0) = 0,y′′ y′

f(t) ={
cosπt,

0,

0 ≤ t ≤ 2,

 otherwise. 
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Solution
We need the Laplace transform of . This function can be written in terms of a Heaviside function, .
In order to apply the Second Shift Theorem, we need a shifted version of the cosine function. We find the shifted version by
noting that . Thus, we have

The Laplace transform of this driving term is

Now we can proceed to solve the initial value problem. The Laplace transform of the initial value problem yields

Therefore,

We can retrieve the solution to the initial value problem using the Second Shift Theorem. The solution is of the form 
 for

Then, the final solution takes the form

We only need to find  in order to finish the problem. This is easily done by using the partial fraction decomposition

Then,

The final solution is then given by

A plot of this solution is shown in Figure .

f(t) f(t) = cosπtH(t−2)

cosπ(t−2) = cosπt

f(t) = cosπt[H(t) −H(t−2)]

= cosπt−cosπ(t−2)H(t−2), t ≥ 0. (9.8.17)

F (s) = (1 − )L[cosπt] = (1 − ) .e−2s e−2s s

+s2 π2

( +1)Y (s) = (1 − ) .s2 e−2s s

+s2 π2

Y (s) = (1 − ) .e−2s s

( + ) ( +1)s2 π2 s2

Y (s) = (1 − )G(s)e−2s

G(s) = .
s

( + ) ( +1)s2 π2 s2

y(t) = g(t) −g(t−2)H(t−2).

g(t)

G(s) = = [ − ] .
s

( + ) ( +1)s2 π2 s2

1

−1π2

s

+1s2

s

+s2 π2

g(t) = [ ] = (cos t−cosπt).L
−1 s

( + ) ( +1)s2 π2 s2

1

−1π2

y(t) = [cos t−cosπt−H(t−2)(cos(t−2) −cosπt)].
1

−1π2

9.8.10
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Figure : A plot of the solution to Example  in which a spring at rest experiences an piecewise defined force.
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9.9: The Convolution Theorem
Finally, we consider the convolution of two functions. Often we are faced with having the product of two Laplace transforms that
we know and we seek the inverse transform of the product. For example, let’s say we have obtained  while

trying to solve an initial value problem. In this case we could find a partial fraction decomposition. But, are other ways to find the
inverse transform, especially if we cannot perform a partial fraction decomposition. We could use the Convolution Theorem for
Laplace transforms or we could compute the inverse transform directly. We will look into these methods in the next two sections.
We begin with defining the convolution.

We define the convolution of two functions defined on  much the same way as we had done for the Fourier transform. The
convolution  is defined as

Note that the convolution integral has finite limits as opposed to the Fourier transform case.

The convolution operation has two important properties:

1. The convolution is commutative:  
Proof. The key is to make a substitution  in the integral. This makes  a simple function of the integration variable.

2. The Convolution Theorem: The Laplace transform of a convolution is the product of the Laplace transforms of the individual
functions:

Proof. Proving this theorem takes a bit more work. We will make some assumptions that will work in many cases. First, we
assume that the functions are causal,  and  for . Secondly, we will assume that we can interchange
integrals, which needs more rigorous attention than will be provided here. The first assumption will allow us to write the finite
integral as an infinite integral. Then a change of variables will allow us to split the integral into the product of two integrals that
are recognized as a product of two Laplace transforms. 
Carrying out the computation, we have

Now, make the substitution . We note that 
However, since  is a causal function, we have that it vanishes for  and we can change the integration interval to 

. So, after a little rearranging, we can proceed to the result.

Y (s) = 1
(s−1)(s−2)

[0, ∞)

f ∗ g

(f ∗ g)(t) = f(u)g(t−u)du.∫
t

0

(9.9.1)

f ∗ g = g∗ f

y = t−u f

(g∗ f)(t) = g(u)f(t−u)du∫
t

0

= − g(t−y)f(y)dy∫
0

t

= f(y)g(t−y)dy∫
t

0

= (f ∗ g)(t). (9.9.2)

L[f ∗ g] = F (s)G(s)

f(t) = 0 g(t) = 0 t < 0

L[f ∗ g] = ( f(u)g(t−u)du) dt∫
∞

0

∫
t

0

e−st

= ( f(u)g(t−u)du) dt∫
∞

0

∫
∞

0

e−st

= f(u)( g(t−u) dt) du∫
∞

0

∫
∞

0

e−st (9.9.3)

τ = t−u f(u)( g(t−u) dt)du = f(u)( g(τ) dτ)duint∞
0 ∫ ∞

0
e−st ∫ ∞

0
∫ ∞

−u
e−s(τ+u)

g(τ) τ < 0

[0, ∞)
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We make use of the Convolution Theorem to do the following examples.

Find .

Solution
We note that this is a product of two functions

We know the inverse transforms of the factors:  and .

Using the Convolution Theorem, we find . We compute the convolution:

One can also confirm this by carrying out a partial fraction decomposition.

Consider the initial value problem, , .

Solution
The Laplace transform of this problem is given by

Solving for , we obtain

The inverse Laplace transform of the second term is easily found as ; however, the first term is more complicated.

We can use the Convolution Theorem to find the Laplace transform of the first term. We note that

L[f ∗ g] = f(u)( g(τ) dτ) du∫
∞

0

∫
∞

0

e−s(τ+u)

= f(u) ( g(τ) dτ) du∫
∞

0

e−su ∫
∞

0

e−sτ

=( f(u) du)( g(τ) dτ)∫
∞

0

e−su ∫
∞

0

e−sτ

= F (s)G(s). (9.9.4)

 Example 9.9.1

y(t) = [ ]L
−1 1

(s−1)(s−2)

Y (s) = = = F (s)G(s). 
1

(s−1)(s−2)

1

s−1

1

s−2

f(t) = et g(t) = e2t

y(t) = (f ∗ g)(t)

y(t) = f(u)g(t−u)du∫
t

0

= du∫
t

0

eue2(t−u)

= due2t ∫
t

0

e−u

= [− +1] = − .e2t et e2t et (9.9.5)

 Example 9.9.2

+9y = 2 sin3t, y(0) = 1y′′ (0) = 0y′

( +9)Y −s = .s2 6

+9s2

Y (s)

Y (s) = + .
6

( +9)s2 2

s

+9s2

cos(3t)

=
6

( +9)s2 2

2

3

3

( +9)s2

3

( +9)s2
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is a product of two Laplace transforms (up to the constant factor). Thus,

where . Evaluating this convolution product, we have

Combining this with the inverse transform of the second term of , the solution to the initial value problem is

Note that the amplitude of the solution will grow in time from the first term. You can see this in Figure . This is known as
a resonance.

Figure : Plot of the solution to Example  showing a resonance.

Find  using partial fraction decomposition.

Solution

[ ] = (f ∗ g)(t),L
−1 6

( +9)s2 2

2

3

f(t) = g(t) = sin3t

[ ]L
−1 6

( +9)s2 2
= (f ∗ g)(t)

2

3

= sin3u sin3(t−u)du
2

3
∫

t

0

= [cos 3(2u− t) −cos 3t]du
1

3
∫

t

0

=
1

3
[ sin(6u−3t) −u cos 3t]

1

6

t

0

= sin3t− t cos 3t.
1

9

1

3
(9.9.6)

Y (s)

y(t) = − t cos 3t+ sin3t+cos 3t.
1

3

1

9

9.9.1

9.9.1 9.9.2

 Example 9.9.3

[ ]L
−1 6

( +9)s2 2
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If we look at Table 9.7.2, we see that the Laplace transform pairs with the denominator  are

and

So, we might consider rewriting a partial fraction decomposition as

Combining the terms on the right over a common denominator, we find

Collecting like powers of , we have

Therefore, , and . Solving the last two equations, we find .

Using these results, we find

This is the result we had obtained in the last example using the Convolution Theorem.

This page titled 9.9: The Convolution Theorem is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

( + )s2 ω2 2

L[t sinωt] =
2ωs

( + )s2 ω2 2

L[t cosωt] = .
−s2 ω2

( + )s2 ω2 2

= + + .
6

( +9)s2 2

A6s

( +9)s2 2

B ( −9)s2

( +9)s2 2

Cs+D

+9s2

6 = 6As+B ( −9)+(Cs+D)( +9) .s2 s2

s

C +(D+B) +6As+(D−B) = 6.s3 s2

C = 0,A = 0,D+B = 0 D−B = 2
3

D = −B = 1
3

= − + .
6

( +9)s2 2

1

3

( −9)s2

( +9)s2 2

1

3

1

+9s2
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9.10: The Inverse Laplace Transform
Until this point we have seen that the inverse Laplace transform can be found by making use of Laplace transform tables and
properties of Laplace transforms. This is typically the way Laplace transforms are taught and used in a differential equations
course. One can do the same for Fourier transforms. However, in the case of Fourier transforms we introduced an inverse transform
in the form of an integral. Does such an inverse integral transform exist for the Laplace transform? Yes, it does! In this section we
will derive the inverse Laplace transform integral and show how it is used.

We begin by considering a causal function  which vanishes for  and define the function  with . For 
 absolutely integrable,

we can write the Fourier transform,

and the inverse Fourier transform,

Multiplying by  and inserting  into the integral for , we find

Letting  so , we have

Note that the inside integral is simply . So, we have

The integral in the last equation is the inverse Laplace transform, called the Bromwich integral and is named after Thomas John
I’Anson Bromwich (1875-1929). This inverse transform is not usually covered in differential equations courses because the
integration takes place in the complex plane. This integral is evaluated along a path in the complex plane called the Bromwich
contour. The typical way to compute this integral is to first chose  so that all poles are to the left of the contour. This guarantees
that  is of exponential type. The contour is closed a semicircle enclosing all of the poles. One then relies on a generalization of
Jordan’s lemma to the second and third quadrants.

Closing the contour to the left of the contour can be reasoned in a manner similar to what we saw in Jordan’s Lemma. Write the
exponential as  . The second factor is an oscillating factor and the growth in the exponential can only
come from the first factor. In order for the exponential to decay as the radius of the semicircle grows, . Since ,
we need  which is done by closing the contour to the left. If , then the contour to the right would enclose no
singularities and preserve the causality of .

Find the inverse Laplace transform of .

f(t) t < 0 g(t) = f(t)e−ct c > 0

g(t)

|g(t)|dt = |f(t)| dt < ∞,∫
∞

−∞

∫
∞

0

e−ct

(ω) = g(t) dt = f(t) dtĝ ∫
∞

−∞

eiωt ∫
∞

0

eiωt−ct

g(t) = f(t) = (ω) dω.e−ct 1

2π
∫

∞

−∞

ĝ e−iωt

ect (ω)ĝ g(t)

f(t) = f(τ) dτ dω.
1

2π
∫

∞

−∞

∫
∞

0

e(iω−c)τ e−(iω−c)t

s = c− iω( dω = ids)

f(t) = f(τ) dτ ds
i

2π
∫

c−i∞

c+i∞

∫
∞

0

e−sτ est

F (s)

f(t) = F (s) ds.
1

2πi
∫

c+i∞

c−i∞

est (9.10.1)

c

f(t)
1

 Note

=est =e( +i )tsR sI e tsR ei tsl

t < 0sR t > 0

s < 0 t < 0

f(t)

 Example 9.10.1

F (s) = 1

s(s+1)
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Solution
The integral we have to compute is

This integral has poles at  and . The contour we will use is shown in Figure . We enclose the contour with
a semicircle to the left of the path in the complex s-plane. One has to verify that the integral over the semicircle vanishes as the
radius goes to infinity. Assuming that we have done this, then the result is simply obtained as  times the sum of the
residues. The residues in this case are:

and

Therefore, we have

Figure : The contour used for applying the Bromwich integral to the Laplace transform .

We can verify this result using the Convolution Theorem or using a partial fraction decomposition. The latter method is
simplest. We note that

f(t) = ds
1

2πi
∫

c+i∞

c−i∞

est

s(s+1)

s = 0 s = −1 9.10.1

2πi

Res[ ; z = 0] = = 1
ezt

z(z+1)
lim
z→0

ezt

(z+1)

Res[ ; z = −1] = = − .
ezt

z(z+1)
lim
z→−1

ezt

z
e−t

f(t) = 2πi [ (1) + (− )] = 1 − .
1

2πi

1

2πi
e−t e−t

9.10.1 F (s) = 1

s(s+1)
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The first term leads to an inverse transform of 1 and the second term gives . So,

Thus, we have verified the result from doing contour integration.

Find the inverse Laplace transform of .

Solution
In this case, we need to compute

This integral has poles at complex values of s such that , or . Letting , we see that

We see  and  satisfies  and . Therefore,  for  an odd integer. Therefore, the integrand has
an infinite number of simple poles at . It also has a simple pole at .

In Figure  we indicate the poles. We need to compute the resides at each pole. At  we have

At , the residue is

= − . 
1

s(s+1)

1

s

1

s+1

e−t

[ − ] = 1 − .L
−1 1

s

1

s+1
e−t

 Example 9.10.2

F (s) = 1

s(1+ )es

f(t) = ds.
1

2πi
∫

c+i∞

c−i∞

est

s (1 + )es

1 + = 0es = −1es s = x+ iy

= = (cosy+ i siny) = −1.es ex+iy ex

x = 0 y cosy = −1 siny = 0 y = nπ n

s = nπi,n = ±1, ±3, … s = 0

9.10.2 s = nπi

Res[ ; s = nπi]
est

s(1 + )es
= (s−nπi)lim

s→nπi

est

s(1 + )es

= lim
s→nπi

est

ses

= − , n odd.
enπit

nπi
(9.10.2)

s = 0

Res[ ; s = 0] = = .
est

s (1 + )es
lim
s→0

est

1 +es
1

2
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Figure : The contour used for applying the Bromwich integral to the Laplace transform .

Summing the residues and noting the exponentials for  can be combined to form sine functions, we arrive at the inverse
transform.

The series in this example might look familiar. It is a Fourier sine series with odd harmonics whose amplitudes decay like .
It is a vertically shifted square wave. In fact, we had computed the Laplace transform of a general square wave in Example
9.8.7.

In that example we found

In this example, one can show that

The reader should verify that this result is indeed the square wave shown in Figure .

9.10.2 F (s) = 1
1+es

±n

f(t) = −
1

2
∑
n odd 

enπit

nπi

= −2 .
1

2
∑
k=1

∞ sin(2k−1)πt

(2k−1)π
(9.10.3)

1/n

L[ [H(t−2na) −H(t−(2n+1)a)]]∑
n=0

∞

=
1 −e−as

s (1 − )e−2as

= .
1

s (1 + )e−as
(9.10.4)

f(t) = [H(t−2n+1) −H(t−2n)].∑
n=0

∞
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Figure : Plot of the square wave result as the inverse Laplace transform of  with 50 terms.
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9.11: Transforms and Partial Differential Equations
As another application of the transforms, we will see that we can use transforms to solve some linear partial differential equations.
We will first solve the one dimensional heat equation and the two dimensional Laplace equations using Fourier transforms. The
transforms of the partial differential equations lead to ordinary differential equations which are easier to solve. The final solutions
are then obtained using inverse transforms.

We could go further by applying a Fourier transform in space and a Laplace transform in time to convert the heat equation into an
algebraic equation. We will also show that we can use a finite sine transform to solve nonhomogeneous problems on finite
intervals. Along the way we will identify several Green’s functions.

Fourier Transform and the Heat Equation
We will first consider the solution of the heat equation on an infinite interval using Fourier transforms. The basic scheme has been
discussed earlier and is outlined in Figure .

Figure : Using Fourier transforms to solve a linear partial differential equation.

Consider the heat equation on the infinite line,

We can Fourier transform the heat equation using the Fourier transform of ,

We need to transform the derivatives in the equation. First we note that

Assuming that  and , then we also have that

9.11.1

9.11.1

= α ,ut uxx

u(x, 0) = f(x),

−∞ < x < ∞, t > 0.

−∞ < x < ∞.
(9.11.1)

u(x, t)

F [u(x, t)] = (k, t) = u(x, t) dxû ∫
∞

−∞
eikx

F [ ]ut = dx∫
∞

−∞

∂u(x, t)

∂t
eikx

= u(x, t) dx
∂

∂t
∫

∞

−∞
eikx

=
∂ (k, t)û

∂t
(9.11.2)

u(x, t) = 0lim|x|→∞ (x, t) = 0lim|x|→∞ ux

F [ ]uxx = dx∫
∞

−∞

u(x, t)∂2

∂x2
eikx

= − (k, t)k2û (9.11.3)
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Therefore, the heat equation becomes

This is a first order differential equation which is readily solved as

where  is an arbitrary function of . The inverse Fourier transform is

We can determine  using the initial condition. Note that

But we also have from the solution,

Comparing these two expressions for , we see that

We note that  is given by the product of two Fourier transforms, . So, by the Convolution Theorem,
we expect that  is the convolution of the inverse transforms,

where

In order to determine , we need only recall Example 9.5.1. In that example we saw that the Fourier transform of a Gaussian
is a Gaussian. Namely, we found that

or,

Applying this to the current problem, we have

Finally, we can write down the solution to the problem:

The function in the integrand,

= −α (k, t)
∂ (k, t)û

∂t
k2û

(k, t) = A(k)û e−α tk2

A(k) k

u(x, t) = (k, t) dk
1

2π
∫

∞

−∞
û e−ikx

= (k) dk
1

2π
∫

∞

−∞
Â e−α tk2

e−ikx (9.11.4)

A(k)

F [u(x, 0)] = (k, 0) = f(x) dx.û ∫
∞

−∞
eikx

u(x, 0) = (k) dk.
1

2π
∫

∞

−∞
Â e−ikx

(k, 0)û

A(k) =F [f(x)].

(k, t)û (k, t) = A(k)û e−α tk2

u(x, t)

u(x, t) = (f ∗ g)(x, t) = f(ξ, t)g(x−ξ, t)dξ,
1

2π
∫

∞

−∞

g(x, t) = [ ]F
−1 e−α tk2

g(x, t)

F [ ]= ,e−a /2x2 2π

a

−−−
√ e− /2ak2

[ ] = .F
−1 2π

a

−−−
√ e− /2ak2

e−a /2x2

g(x) = [ ]= .F
−1 e−α tk2 π

αt

−−−
√ e− /4tx2

u(x, t) = (f ∗ g)(x, t) = f(ξ, t) dξ,∫
∞

−∞

e−(x−ξ /4t)2

4παt
− −−−

√
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is called the heat kernel.

Laplace’s Equation on the Half Plane

We consider a steady state solution in two dimensions. In particular, we look for the steady state solution, , satisfying the
two-dimensional Laplace equation on a semi-infinite slab with given boundary conditions as shown in Figure . The boundary
value problem is given as

Figure : This is the domain for a semi-infinite slab with boundary value  and governed by Laplace’s equation.

This problem can be solved using a Fourier transform of  with respect to . The transform scheme for doing this is shown in
Figure . We begin by defining the Fourier transform

Figure : The transform scheme used to convert Laplace’s equation to an ordinary differential equation which is easier to
solve.

K(x, t) =
e− /4tx2

4παt
− −−−

√

u(x, y)
9.11.2

+ = 0, −∞ < x < ∞, y > 0,uxx uyy

u(x, 0) = f(x), −∞ < x < ∞

u(x, y) = 0, u(x, y) = 0.limy→∞ lim|x|→∞

(9.11.5)

9.11.2 u(x, 0) = f(x)

u(x, y) x

9.11.3

(k, y) =F [u] = u(x, y) dx.û ∫
∞

−∞
eikx
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We can transform Laplace’s equation. We first note from the properties of Fourier transforms that

if  and . Also,

Thus, the transform of Laplace’s equation gives .

This is a simple ordinary differential equation. We can solve this equation using the boundary conditions. The general solution is

Since  and  can be positive or negative, we have that . The coefficient  can be
determined using the remaining boundary condition, . We find that  since

We have found that . We can obtain the solution using the inverse Fourier transform,

We note that this is a product of Fourier transforms and use the Convolution Theorem for Fourier transforms. Namely, we have that
 and  for . This last result is essentially proven in Problem 

Then, the Convolution Theorem gives the solution

We note for future use, that this solution is in the form

where

is the Green’s function for this problem.

Heat Equation on Infinite Interval, Revisited
We will reconsider the initial value problem for the heat equation on an infinite interval,

We can apply both a Fourier and a Laplace transform to convert this to an algebraic problem. The general solution will then be
written in terms of an initial value Green’s function as

For the time dependence we can use the Laplace transform and for the spatial dependence we use the Fourier transform. These
combined transforms lead us to define

F [ ] = − (k, y),
u∂2

∂x2
k2û

u(x, y) = 0lim|x|→∞ (x, y) = 0lim|x|→∞ ux

F [ ] = .
u∂2

∂y2

(k, y)∂2û

∂y2

=ûyy k2û

(k, y) = a(k) +b(k) .û eky e−ky

u(x, y) = 0limy→∞ k (k, y) = a(k)û e−|k|y a(k)

u(x, 0) = f(x) a(k) = (k)f̂

a(k) = (k, 0) = u(x, 0) dx = f(x) dx = (k).û ∫
∞

−∞
eikx ∫

∞

−∞
eikx f̂

(k, y) = (k)û f̂ e−|k|y

u(x, t) = [ (k) .F
−1 f̂ e−|k|y]

a(k) =F [f ] =F [g]e−|k|y g(x, y) =
2y

+x2 y2 6.

u(x, y) = f(ξ)g(x−ξ)dξ
1

2π
∫

∞

−∞

= f(ξ) dξ
1

2π
∫

∞

−∞

2y

(x−ξ +)2 y2
(9.11.6)

u(x, y) = f(ξ)G(x, ξ; y, 0)dξ,∫
∞

−∞

G(x, ξ; y, 0) =
2y

π ((x−ξ + ))2 y2

= ,ut uxx

u(x, 0) = f(x),

−∞ < x < ∞, t > 0

−∞ < x < ∞.
(9.11.7)

u(x, t) = G(x, t; ξ, 0)f(ξ)dξ.∫
∞

−∞
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Applying this to the terms in the heat equation, we have

Here we have assumed that

Therefore, the heat equation can be turned into an algebraic equation for the transformed solution,

or

The solution to the heat equation is obtained using the inverse transforms for both the Fourier and Laplace transform. Thus, we
have

Since the inside integral has a simple pole at , we can compute the Bromwich integral by choosing . Thus,

Inserting this result into the solution, we have

This solution is of the form

for . So, by the Convolution Theorem for Fourier transforms, the solution is a convolution,

All we need is the inverse transform of .

We note that  is a Gaussian. Since the Fourier transform of a Gaussian is a Gaussian, we need only recall Example
9.5.1,

Setting , this becomes

(k, s) =F [L[u]] = u(x, t) dtdx.û ∫
∞

−∞
∫

∞

0
e−steikx

F [L [ ]]ut

F [L [ ]]uxx

= s (k, s) −F [u(x, 0)]û

= s (k, s) − (k)û f̂

= − (k, s).k2û (9.11.8)

u(x, t) = 0, u(x, t) = 0, (x, t) = 0.lim
t→∞

e−st lim
|x|→∞
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|x|→∞

ux

(s+ ) (k, s) = (k),k2 û f̂

(k, s) = .û
(k)f̂

s+k2

u(x, t) = [ [ ]]F
−1

L
−1 û

= ( ds) dk.
1

2π
∫

∞

−∞

1

2πi
∫

c+∞

c−i∞

(k)f̂

s+k2
est e−ikx (9.11.9)

s = −k2 c > −k2

ds = Res[ ; s = − ] = (k).
1

2πi
∫

c+∞

c−i∞

(k)f̂

s+k2
est

(k)f̂

s+k2
est k2 e− tk2

f̂

u(x, t) = [ [ ]]F
−1

L
−1 û

= (k) dk.
1

2π
∫

∞

−∞
f̂ e− tk2

e−ikx (9.11.10)

u(x, t) = [ ]F
−1 f̂ ĝ

(k) =ĝ e− tk2

u(x, t) = f(ξ)g(x−ξ)dξ∫
∞

−∞

(k)ĝ
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So,

Inserting  into the solution, we have

Here we have identified the initial value Green’s function

Nonhomogeneous Heat Equation

We now consider the nonhomogeneous heat equation with homogeneous boundary conditions defined on a finite interval.

We know that when  the solution takes the form

So, when , we might assume that the solution takes the form

where the  s are the finite Fourier sine transform of the desired solution,

Note that the finite Fourier sine transform is essentially the Fourier sine transform which we encountered in Section 3.4.

The idea behind using the finite Fourier Sine Transform is to solve the given heat equation by transforming the heat equation to a
simpler equation for the transform, , solve for , and then do an inverse transform, i.e., insert the  ’s back into the
series representation. This is depicted in Figure . Note that we had explored similar diagram earlier when discussing the use
of transforms to solve differential equations.

g(x) = [ ]=F
−1 e− tk2 e− /4tx2

4πt
−−−

√

g(x)

u(x, t) = f(ξ) dξ
1

4πt
−−−

√
∫

∞

−∞
e−(x−ξ /4t)2

= G(x, t; ζ, 0)f(ξ)dξ∫
∞

−∞
(9.11.11)

G(x, t; ξ, 0) = .
1

4πt
−−−

√
e−(x−ξ /4t)2

−k = h(x, t), 0 ≤ x ≤ L, t > 0ut uxx

u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 ≤ x ≤

(9.11.12)

h(x, t) ≡ 0

u(x, t) = sin∑
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∞

bn
nπx

L

h(x, t) ≠ 0

u(x, t) = (t) sin∑
n=1

∞
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nπx

L

b′
n

(t) = [u] = u(x, t) sin dxbn Fs

2

L
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0
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Figure : Using finite Fourier transforms to solve the heat equation by solving an ODE instead of a PDE.

First, we need to transform the partial differential equation. The finite transforms of the derivative terms are given by

where .

Furthermore, we define

Then, the heat equation is transformed to

This is a simple linear first order differential equation. We can supplement this equation with the initial condition

The differential equation for  is easily solved using the integrating factor, . Thus,

9.11.4

[ ] =Fs ut

=

=

(x, t) sin dx
2

L
∫

L

0

∂u

∂t

nπx
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dt

2

L
∫
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dbn

dt
(9.11.13)
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=
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nπ

L

nπx

L

L

0
( )
nπ

L

2 2

L
∫

L

0

nπx

L

[u(0, t) −u(L, 0) cosnπ] −
nπ

L
( )
nπ

L

2
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=ωn
nπ

L

(t) = [h] = h(x, t) sin dx.Hn Fs

2

L
∫
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dbn
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and the solution is

The final step is to insert these coefficients (finite Fourier sine transform) into the series expansion (inverse finite Fourier sine
transform) for . The result is

This solution can be written in a more compact form in order to identify the Green’s function. We insert the expressions for 
and  in terms of the initial profile and source term and interchange sums and integrals. This leads to

Here we have defined the Green’s function

We note that  gives the initial value Green’s function.

Note that at ,

This is actually the series representation of the Dirac delta function. The Fourier sine transform of the delta function is

Then, the representation becomes

Also, we note that

Therefore,  at least for  and .

( (t)) = (t)
d

dt
e tω2

n bn Hn e tω2
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0
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=

=
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∞ 2
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0
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0
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G(x, ξ; t, τ) = sin sin .
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∞ nπx

L
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We can modify this problem by adding nonhomogeneous boundary conditions.

One way to treat these conditions is to assume  where  and . Then, 
 satisfies the original nonhomogeneous heat equation.

If  satisfies  and  satisfies  and , then 

Finally, we note that

Therefore,  satisfies the original problem if

and

We can solve the last problem to obtain . The solution to the problem for  is simply the problem we had
solved already in terms of Green’s functions with the new initial condition, .

Solution of the  Poisson Equation
We recall from electrostatics that the gradient of the electric potential gives the electric field, . However, we also have
from Gauss’ Law for electric fields , where  is the charge distribution at position . Combining these equations, we
arrive at Poisson’s equation for the electric potential,

We note that Poisson’s equation also arises in Newton’s theory of gravitation for the gravitational potential in the form 
 where  is the matter density.

We consider Poisson’s equation in the form

for  defined throughout all space. We will seek a solution for the potential function using a three dimensional Fourier transform. In
the electrostatic problem  and the gravitational problem has 

The Fourier transform can be generalized to three dimensions as

where the integration is over all space, , and  is a three dimensional wavenumber, . The
inverse Fourier transform can then be written as

where  and  is all of -space.

The Fourier transform of the Laplacian follows from computing Fourier transforms of any derivatives that are present. Assuming
that  and its gradient vanish for large distances, then

−k = h(x, t), 0 ≤ x ≤ L, t > 0,ut uxx

u(0, t) = A, u(L, t) = B, t > 0,

u(x, 0) = f(x), 0 ≤ x ≤ L.

(9.11.16)

u(x, t) = w(x) +v(x, t) −k = h(x, t)vt vxx = 0wxx

u(x, t) = w(x) +v(x, t)

v(x, t) v(0, t) = v(L, t) = 0 w(x) w(0) = A w(L) = B

u(0, t) = w(0) +v(0, t) = Au(L, t) = w(L) +v(L, t) = B

v(x, 0) = u(x, 0) −w(x) = f(x) −w(x).

u(x, t) = w(x) +v(x, t)

−k = h(x, t), 0 ≤ x ≤ L, t > 0,vt vxx

v(0, t) = 0, v(L, t) = 0, t > 0,

v(x, 0) = f(x) −w(x), 0 ≤ x ≤ L.

(9.11.17)

= 0,wxx

w(0) = A,
0 ≤ x ≤ L,
w(L) = B. (9.11.18)

w(x) = A+ xB−A

L
v(x, t)

f(x) −A− xB−A

L

D3

E = −∇ϕ

∇ ⋅ E =
ρ

ϵ0
ρ(r) r

ϕ = − .∇2 ρ

ϵ0

ϕ = −4πGρ∇2 ρ

ϕ(r) = −4πf(r)∇2

r

f = ρ(r)/4πϵ0 f = Gρ(r)

(k) = ϕ(r) rϕ̂ ∫
V

eik⋅rd3

V , r = dxdydzd3 k k = i + j + kkx ky kz

ϕ(r) = (k) k,
1

(2π)3
∫
Vk

ϕ̂ e−ik⋅rd3

k = d d dd3 kx ky kz Vk k

ϕ
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Defining , then Poisson’s equation becomes the algebraic equation

Solving for , we have

The solution to Poisson’s equation is then determined from the inverse Fourier transform,

First we will consider an example of a point charge (or mass in the gravitational case) at the origin. We will set  in
order to represent a point source. For a unit point charge, .

The three dimensional Dirac delta function, .

Here we have introduced the three dimensional Dirac delta function which, like the one dimensional case, vanishes outside the
origin and satisfies a unit volume condition,

Also, there is a sifting property, which takes the form

In Cartesian coordinates,

and

One can define similar delta functions operating in two dimensions and  dimensions.

We can also transform the Cartesian form into curvilinear coordinates. From Section 6.9 we have that the volume element in
curvilinear coordinates is

where .

This gives

Therefore,

F [ ϕ] = −( + + ) (k).∇2 k2
x k2

y k2
z ϕ̂

= + +k2 k2
x k2

y k2
z

(k) = 4π (k).k2ϕ̂ f̂

(k)ϕ̂

ϕ(k) = (k).
4π

k2
f̂

ϕ(r) = (k) k.
4π

(2π)3
∫
Vk

f̂
e−ik⋅r

k2
d3 (9.11.19)

f(r) = (r)f0δ3

= 1/4πf0 ϵ0

 Note

(r − )δ3 r0

(r) r = 1.∫
V

δ3 d3

(r − )f(r) r = f ( ) .∫
V

δ3 r0 d3 r0

(r) = δ(x)δ(y)δ(z),δ3

(r) r = δ(x)δ(y)δ(z)dxdydz = 1,∫
V

δ3 d3 ∫
∞

−∞
∫

∞

−∞
∫

∞

−∞

δ (x− ) δ (y− ) δ (z− )f(x, y, z)dxdydz = f ( , , )∫
∞

−∞
∫

∞

−∞
∫

∞

−∞
x0 y0 z0 x0 y0 z0

n

r = dxdydz = d d d ,d3 h1h2h3 u1 u2 u3

(r) r = (r) d d d = 1.∫
V

δ3 d3 ∫
V

δ3 h1h2h3 u1 u2 u3
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So, for cylindrical coordinates,

Find the solution of Poisson’s equation for a point source of the form .

Solution
The solution is found by inserting the Fourier transform of this source into Equation  and carrying out the integration.
The transform of  is found as

Inserting  into the inverse transform in Equation  and carrying out the integration using spherical coordinates in 
-space, we find

If the last example is applied to a unit point charge, then . So, the electric potential outside a unit point charge located
at the origin becomes

This is the form familiar from introductory physics.

Also, by setting , we have also shown in the last example that

Since , then we have also shown that

This page titled 9.11: Transforms and Partial Differential Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed,
and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history
is available upon request.

(r)δ3 =
δ ( )u1

∣
∣

∂r

∂u1

∣
∣

δ ( )u2

∣
∣

∂r

∂u2

∣
∣

δ ( )u3

∣
∣

∂r

∂u2

∣
∣

= δ ( ) δ ( ) δ ( )
1

h1h2h3
u1 u2 u3 (9.11.20)

(r) = δ(r)δ(θ)δ(z).δ3 1

r

 Example 9.11.1

f(r) = (r)f0δ
3

(9.11.19)
f(r)

(k) = (r) r = .f̂ ∫
V

f0δ
3 eik⋅rd3 f0

(k)f̂ (9.11.19)
k

ϕ(r) = k
4π

(2π)3
∫
Vk

f0
e−ik⋅r

k2
d3

= sinθdkdθdϕ
f0

2π2
∫

2π

0
∫

π

0
∫

∞

0

e−ikx cos θ

k2
k2

= sinθdkdθ
f0

π
∫

π

0
∫

∞

0
e−ikx cos θ

= dkdy, y = cosθ
f0

π
∫

∞

0
∫

1

−1
e−ikxy

= dz =
2f0

πr
∫

∞

0

sinz

z

f0

r
(9.11.21)

= 1/4πf0 ϵ0

ϕ(r) = .
1

4π rϵ0

= 1f0

( ) = −4π (r). ∇2 1

r
δ3

∇ ( ) = −1
r

r
r3

∇ ⋅( ) = 4π (r). 
r

r3
δ3
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9.12: Problems

In this problem you will show that the sequence of functions

approaches  as . Use the following to support your argument:

a. Show that  for .
b. Show that the area under each function is one.

Verify that the sequence of functions , defined by  , approaches a delta function.

Evaluate the following integrals:

a. .

b. .

c. .
d. . [See Problem 4.]
e. . [See Problem 4.]

For the case that a function has multiple roots, , it can be shown that

Use this result to evaluate .

Find a Fourier series representation of the Dirac delta function, , on .

For , find the Fourier transform, , of .

Use the result from the last problem plus properties of the Fourier transform to find the Fourier transform, of 
for .

 Exercise 9.12.1

(x) = ( )fn
n

π

1

1 +n2x2

δ(x) n → ∞

(x) = 0limn→∞ fn x ≠ 0

 Exercise 9.12.2

{ (x)}fn
∞
n=1 (x) =fn

n

2
e−n|x|

 Exercise 9.12.3

sinxδ (x− )dx∫ π

0
π

2

δ( ) (3 −7x+2)dx∫
∞

−∞
x−5

3
e2x x2

δ (x+ )dx∫ π

0 x2 π

2

δ ( −5x+6)dx∫ ∞
0 e−2x x2

( −2x+3) δ ( −9)dx∫ ∞
−∞

x2 x2

 Exercise 9.12.4

f ( ) = 0, i = 1, 2, …xi

δ(f(x)) = .∑
i=1

n δ (x− )xi

| ( )|f ′ xi

δ ( −5x−6) (3 −7x+2)dx∫ ∞
−∞

x2 x2

 Exercise 9.12.5

δ(x) [−L,L]

 Exercise 9.12.6

a > 0 (k)f̂ f(x) = e−a|x|

 Exercise 9.12.7

f(x) = x2e−a|x|

a > 0
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Find the Fourier transform, , of .

Prove the second shift property in the form

A damped harmonic oscillator is given by

a. Find  and
b. the frequency distribution .
c. Sketch the frequency distribution.

Show that the convolution operation is associative:  .

In this problem you will directly compute the convolution of two Gaussian functions in two steps.

a. Use completing the square to evaluate

b. Use the result from part a to directly compute the convolution in Example 9.6.6:

You will compute the (Fourier) convolution of two box functions of the same width. Recall the box function is given by

Consider  for different intervals of . A few preliminary sketches would help. In Figure  the factors in the
convolution integrand are show for one value of . The integrand is the product of the first two functions. The convolution at 
is the area of the overlap in the third figure. Think about how these pictures change as you vary . Plot the resulting areas as a
function of . This is the graph of the desired convolution.

 Exercise 9.12.8

(k)f̂ f(x) = e−2 +xx2

 Exercise 9.12.9

F [ f(x)] = (k+β).eiβx f̂

 Exercise 9.12.10

f(t) ={
A ,e−αtei tω0

0,

t ≥ 0,

t < 0.

(ω)f̂

| (ω)f̂ |2

 Exercise 9.12.11

(f ∗ (g∗ h))(t) = ((f ∗ g) ∗ h)(t)

 Exercise 9.12.12

dt.∫
∞

−∞
e−α +βtt2

(f ∗ g)(x) = dt.e−bx2

∫
∞

−∞
e−(a+b) +2bxtt2

 Exercise 9.12.13

(x) ={fa
1,
0,

|x| ≤ a

|x| > a.

( ∗ ) (x)fa fa x 9.12.1
x x

x

x
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Figure : Sketch used to compute the convolution of the box function with itself. In the top figure is the box function. The
second figure shows the box shifted by . The last figure indicates the overlap of the functions.

Define the integrals . Noting that ,

a. Find a recursive relation between  and .
b. Use this relation to determine  and .
c. Find an expression in terms of  for .

Find the Laplace transform of the following functions.

a. .
b. .
c. .
d. .
e. .
f. .

g. 

h. .
i.  and write the answer in the simplest form.

9.12.1
x

 Exercise 9.12.14

= dxIn ∫ ∞
−∞

x2ne−x2
=I0 π−−√

In In−1

,I1 I2 I3

n In

 Exercise 9.12.15

f(t) = 9 −7t2

f(t) = e5t−3

f(t) = cos 7t
f(t) = sin2te4t

f(t) = (t+cosh t)e2t

f(t) = H(t−1)t2

f(t) ={ .
sin t,

sin t+cos t,

t < 4π

t > 4π
f(t) = (t−u sinudu∫ t

0
)2

f(t) = (t+5 + t cos 3t)2 e2t
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Find the inverse Laplace transform of the following functions using the properties of Laplace transforms and the table of
Laplace transform pairs.

a. 
b. 

c. 
d. 
e. 

f. 
g. 
h. 

Compute the convolution  (in the Laplace transform sense) and its corresponding Laplace transform  for the
following functions:

a. 
b. 
c. 
d. 

For the following problems draw the given function and find the Laplace transform in closed form.

a. .
b. .
c.  .

Use the convolution theorem to compute the inverse transform of the following:

a. 

b. 
c. 

Find the inverse Laplace transform two different ways: i) Use Tables. ii) Use the Bromwich Integral.

a. 

b. 

c. 

d. 

e. 

 Exercise 9.12.16

F (s) = + .18
s3

7
s

F (s) = − .1
s−5

2
+4s2

F (s) = .
s+1

+1s2

F (s) = .3
+2s+2s2

F (s) = .1

(s−1)2

F (s) = .e−3s

−1s2

F (s) = .1
+4s−5s2

F (s) = .s+3
+8s+17s2

 Exercise 9.12.17

(f ∗ g)(t) L[f ∗ g]

f(t) = , g(t) = . t2 t3

f(t) = , g(t) = cos 2t. t2

f(t) = 3 −2t+1, g(t) = .t2 e−3t

f(t) = δ(t− ), g(t) = sin5t.π

4

 Exercise 9.12.18

f(t) = 1 + (−1 H(t−n)∑∞
n=1 )n

f(t) = [H(t−2n+1) −H(t−2n)]∑∞
n=0

f(t) = (t−2n)[H(t−2n) −H(t−2n−1)] +(2n+2 − t)[H(t−∑∞
n=0 2n−1) −H(t−2n−2)]

 Exercise 9.12.19

F (s) = .2
( +1)s2 s2

F (s) = .e−3s

s2

F (s) = .1
s( +2s+5)s2

 Exercise 9.12.20

F (s) = .1

(s+4s3 )
2

F (s) = .1
−4s−5s2

F (s) = .s+3
+8s+17s2

F (s) = .s+1

(s−2 (s+4))
2

F (s) = .+8s−3s2

( +2s+1)( +1)s2 s2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90981?pdf


9.12.5 https://math.libretexts.org/@go/page/90981

Use Laplace transforms to solve the following initial value problems. Where possible, describe the solution behavior in terms
of oscillation and decay.

a. 
b. 
c. 
d. 

Use Laplace transforms to convert the following system of differential equations into an algebraic system and find the solution
of the differential equations.

Use Laplace transforms to convert the following nonhomogeneous systems of differential equations into an algebraic system
and find the solutions of the differential equations.

a. 

b. 

c. 

Consider the series circuit in Problem 2.8.20 and in Figure ?? with  , and 
.

a. Write the second order differential equation for this circuit.
b. Suppose that no charge is present and no current is flowing at time  when  is applied. Use Laplace transforms to

find the current and the charge on the capacitor as functions of time.
c. Replace the battery with the alternating source  with  and . Again,

suppose that no charge is present and no current is flowing at time  when the AC source is applied. Use Laplace
transforms to find the current and the charge on the capacitor as functions of time.

d. Plot your solutions and describe how the system behaves over time.

Use Laplace transforms to sum the following series.

a. .
b. .

c. .

d. .
e. .

 Exercise 9.12.21

−5 +6y = 0, y(0) = 2, (0) = 0.y′′ y′ y′

−y = t , y(0) = 0, (0) = 1.y′′ e2t y′

+4y = δ(t−1), y(0) = 3, (0) = 0.y′′ y′

+6 +18y = 2H(π− t), y(0) = 0, (0) = 0.y′′ y′ y′

 Exercise 9.12.22

x′′

y′′

= 3x−6y,

= x+y,

x(0) = 1,

y(0)

(0)x′

= 0,

= 0

(0)y′ = 0.

 Exercise 9.12.23

= 2x+3y+2 sin2t, x(0) = 1,x′

= −3x+2y, y(0) = 0.y′

= −4x−y+ , x(0) = 2,x′ e−t

= x−2y+2 , y(0) = −1.y′ e−3t

= x−y+2 cos t, x(0) = 3,x′

= x+y−3 sin t, y(0) = 2.y′

 Exercise 9.12.24

L = 1.00H,R = 1.00 × Ω,C = 1.00 ×  F102 10−4

= 1.00 ×  VV0 103

t = 0 V0

V (t) = sin2πftV0 = 1.00 ×  VV0 103 f = 150 Hz
t = 0

 Exercise 9.12.25

∑∞
n=0

(−1)
n

1+2n

∑∞
n=1

1
n(n+3)

∑∞
n=1

(−1)
n

n(n+3)

∑∞
n=0

(−1)
n

−n2 a2

∑∞
n=0

1

(2n+1 −)2 a2
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f. .

Use Laplace transforms to prove

Use this result to evaluate the sums

a. .

b. .

Do the following.

a. Find the first four nonvanishing terms of the Maclaurin series expansion of .
b. Use the result in part a. to determine the first four nonvanishing Bernoulli numbers, .
c. Use these results to compute  for .

Given the following Laplace transforms, , find the function . Note that in each case there are an infinite number of
poles, resulting in an infinite series representation.

a. .

b. .
c. .

d. .

Consider the initial boundary value problem for the heat equation:

Use the finite transform method to solve this problem. Namely, assume that the solution takes the form 
 and obtain an ordinary differential equation for  and solve for the  ’s for each .

This page titled 9.12: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

∑∞
n=1

1
n
e−an

 Exercise 9.12.26

= du.∑
n=1

∞ 1

(n+a)(n+b)

1

b−a
∫

1

0

−ua ub

1 −u

∑∞
n=1

1
n(n+1)

∑∞
n=1

1
(n+2)(n+3)

 Exercise 9.12.27

f(x) = x
−1ex

Bn

ζ(2n) n = 1, 2, 3, 4

 Exercise 9.12.28

F (s) f(t)

F (s) = 1
(1+ )s2 e−s

F (s) = 1
s sinh s

F (s) = sinh s

cosh ss2

F (s) =
sinh(β x)s√

s sinh(β L)s√

 Exercise 9.12.29

= 2 ,ut uxx

u(x, 0) = x(1 −x),

u(0, t) = 0,

u(1, t) = 0,

0 < t, 0 ≤ x ≤ 1,

0 < x < 1,

t > 0,

t > 0.

u(x, t) = (t) sinnπx∑∞
n=1 bn bn bn n
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1

CHAPTER OVERVIEW

10: Numerical Solutions of PDEs

There’s no sense in being precise when you don’t even know what you’re talking about. -
John von Neumann (1903-1957)

Most of the book has dealt with finding exact solutions to some generic problems. However, most problems of interest cannot be
solved exactly. The heat, wave, and Laplace equations are linear partial differential equations and can be solved using separation of
variables in geometries in which the Laplacian is separable. However, once we introduce nonlinearities, or complicated non-
constant coefficients intro the equations, some of these methods do not work. Even when separation of variables or the method of
eigenfunction expansions gave us exact results, the computation of the resulting series had to be done on a computer and inevitably
one could only use a finite number of terms of the expansion. So, therefore, it is sometimes useful to be able to solve differential
equations numerically.

In this chapter we will introduce the idea of numerical solutions of partial differential equations. However, we will first begin with
a discussion of the solution of ordinary differential equations in order to get a feel for some common problems in the solution of
differential equations and the notion of convergence rates of numerical schemes. Then, we turn to the finite difference method and
the ideas of stability. Other common approaches may be added later.

10.1: Ordinary Differential Equations
10.2: The Heat Equation
10.3: Truncation Error
10.4: Stability

This page titled 10: Numerical Solutions of PDEs is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by
Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon
request.
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10.1: Ordinary Differential Equations

Euler’s Method

In this section we will look at the simplest method for solving first order equations, Euler’s Method. While it is not the most efficient
method, it does provide us with a picture of how one proceeds and can be improved by introducing better techniques, which are typically
covered in a numerical analysis text.

Let’s consider the class of first order initial value problems of the form

We are interested in finding the solution  of this equation which passes through the initial point  in the -plane for values of 
 in the interval , where . We will seek approximations of the solution at  points, labeled  for . For equally

spaced points we have , etc. We can write these as

In Figure  we show three such points on the -axis.

Figure : The basics of Euler’s Method are shown. An interval of the  axis is broken into  subintervals. The approximations to the
solutions are found using the slope of the tangent to the solution, given by . Knowing previous approximations at , one
can determine the next approximation, .

The first step of Euler’s Method is to use the initial condition. We represent this as a point on the solution curve, ,
as shown in Figure . The next step is to develop a method for obtaining approximations to the solution for the other  ’s.

We first note that the differential equation gives the slope of the tangent line at  of the solution curve since the slope is the
derivative,  From the differential equation the slope is . Referring to Figure , we see the tangent line drawn at 

. We look now at . The vertical line  intersects both the solution curve and the tangent line passing through .
This is shown by a heavy dashed line.

While we do not know the solution at , we can determine the tangent line and find the intersection point that it makes with the
vertical. As seen in the figure, this intersection point is in theory close to the point on the solution curve. So, we will designate  as the
approximation of the solution . We just need to determine .

The idea is simple. We approximate the derivative in the differential equation by its difference quotient:

Since the slope of the tangent to the curve at  is , we can write

= f(x, y), y ( ) = .
dy

dx
x0 y0 (10.1.1)

y(x) ( , )x0 y0 xy

x [a, b] a = x0 N xn n = 1, … ,N

Δx = − = −x1 x0 x2 x1

= +nΔx.xn x0

10.1.1 x

10.1.1 x N
f(x,y) ( , )xn−1 yn−1

yn

( , y ( )) = ( , )x0 x0 x0 y0

10.1.1 xn

(x, y(x))

(xy′ )′ f(x, y(x)) 10.1.1

( , )x0 y0 x = x1 x = x1 ( , )x0 y0

x = x1

y1

y ( )x1 y1

≈ = .
dy

dx

−y1 y0

−x1 x0

−y1 y0

Δx
(10.1.2)

( , )x0 y0 ( ) = f ( , )y′ x0 x0 y0
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Solving this equation for , we obtain

This gives  in terms of quantities that we know.

We now proceed to approximate . Referring to Figure , we see that this can be done by using the slope of the solution curve at 
. The corresponding tangent line is shown passing though  and we can then get the value of  from the intersection of the

tangent line with a vertical line, . Following the previous arguments, we find that

Continuing this procedure for all , we arrive at the following scheme for determining a numerical solution to the initial
value problem:

This is referred to as Euler’s Method.

Use Euler’s Method to solve the initial value problem   and obtain an approximation for .

Solution
First, we will do this by hand. We break up the interval , since we want the solution at  and the initial value is at . Let 

. Then, ,  and . Note that there are  subintervals and thus three points.

We next carry out Euler’s Method systematically by setting up a table for the needed values. Such a table is shown in Table .
Note how the table is set up. There is a column for each  and . The first row is the initial condition. We also made use of the
function  in computing the  ’s from . This sometimes makes the computation easier. As a result, we find that the
desired approximation is given as .

Table : Application of Euler’s Method for  and .

1

1

2

Is this a good result? Well, we could make the spatial increments smaller. Let’s repeat the procedure for , or . The
results are in Table .

Now we see that the approximation is . So, it looks like the value is near 3, but we cannot say much more. Decreasing 
 more shows that we are beginning to converge to a solution. We see this in Table .

Table : Application of Euler’s Method for  and .

1

1

2

3

4

5

Table : Results of Euler’s Method for  and varying 

≈ f ( , ) .
−y1 y0

Δx
x0 y0 (10.1.3)

y1

= +Δxf ( , ) .y1 y0 x0 y0 (10.1.4)

y1

y ( )x2 10.1.1

( , )x1 y1 ( , )x1 y1 y2

x = x2

= +Δxf ( , ) .y2 y1 x1 y1 (10.1.5)

,n = 1, …Nxn

= y ( ) ,y0 x0

= +Δxf ( , ) , n = 1, … ,N .yn yn−1 xn−1 yn−1 (10.1.6)

 Example 10.1.1

= x+
dy

dx
y, y(0) = 1 y(1)

[0, 1] x = 1 x = 0

Δx = 0.50 = 0x0 = 0.5x1 = 1.0x2 N = = 2b−a

Δx

10.1.1

xn yn
f(x, y) yn (10.1.6)

= 2.5y2

10.1.1 = x+y,y(0) = 1y′ Δx = 0.5

n xn = + Δxf( , = 0.5 + 1.5yn yn−1 xn−1 yn−1 xn−1 y

o o

o.5 0.5(0) + 1.5(1.0) = 1.5

1.o 0.5(0.5) + 1.5(1.5) = 2.5

Δx = 0.2 N = 5

10.1.2

= 2.97664y1

Δx 10.1.3

10.1.2 = x+y,y(0) = 1y′ Δx = 0.2

n xn = 0.2 + 1.2yn xn−1 yn−1

o ∘

0.2 0.2(0) + 1.2(1.0) = 1.2

0.4 0.2(0.2) + 1.2(1.2) = 1.48

0.6 0.2(0.4) + 1.2(1.48) = 1.856

0.8 0.2(0.6) + 1.2(1.856) = 2.3472

1.0 0.2(0.8) + 1.2(2.3472) = 2.97664

10.1.3 = x+y,y(0) = 1y′ Δx
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Of course, these values were not done by hand. The last computation would have taken 1000 lines in the table, or at least 40 pages! One
could use a computer to do this. A simple code in Maple would look like the following:

> restart:  

> f:=(x,y)->y+x;  

> a:=0: b:=1: N:=100: h:=(b-a)/N;  

> x[0]:=0: y[0]:=1: 

    for i from 1 to N do  

    y[i]:=y[i-1]+h*f(x[i-1],y[i-1]):  

    x[i]:=x[0]+h*(i):  

    od: 

    evalf(y[N]); 

In this case we could simply use the exact solution. The exact solution is easily found as

(The reader can verify this.) So, the value we are seeking is

Thus, even the last numerical solution was off by about .

Adding a few extra lines for plotting, we can visually see how well the approximations compare to the exact solution. The Maple code for
doing such a plot is given below.

> with(plots):  

> Data:=[seq([x[i],y[i]],i=0..N)]:  

> P1:=pointplot(Data,symbol=DIAMOND):  

> Sol:=t->-t-1+2*exp(t); 

> P2:=plot(Sol(t),t=a..b,Sol=0..Sol(b)):  

> display({P1,P2}); 

We show in Figures -  the results for  and . In Figure  we can see how quickly the numerical solution
diverges from the exact solution. In Figure  we can see that visually the solutions agree, but we note that from Table  that for 

, the solution is still off in the second decimal place with a relative error of about %.

ΔxΔx ≈ y(1)≈ y(1)yyNN

0.5 2.5

0.2 2.97664

0.1 3.187484920

0.01 3.409627659

0.001 3.433847864

0.0001 3.436291854

y(x) = 2 −x−1.ex

y(1) = 2e−2 = 3.4365636 … .

0.00027

10.1.2 10.1.3 N = 10 N = 100 10.1.2

10.1.3 10.1.3

Δx = 0.01 0.8
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Figure : A comparison of the results Euler’s Method to the exact solution for  and .

Figure : A comparison of the results Euler’s Method to the exact solution for  and .

Why would we use a numerical method when we have the exact solution? Exact solutions can serve as test cases for our methods. We can
make sure our code works before applying them to problems whose solution is not known.

There are many other methods for solving first order equations. One commonly used method is the fourth order Runge-Kutta method. This
method has smaller errors at each step as compared to Euler’s Method. It is well suited for programming and comes built-in in many
packages like Maple and MATLAB. Typically, it is set up to handle systems of first order equations.

In fact, it is well known that th order equations can be written as a system of  first order equations. Consider the simple second order
equation

This is a larger class of equations than the second order constant coefficient equation. We can turn this into a system of two first order
differential equations by letting  and . Then, . So, we have the first order system

We will not go further into the Runge-Kutta Method here. You can find more about it in a numerical analysis text. However, we will see
that systems of differential equations do arise naturally in physics. Such systems are often coupled equations and lead to interesting
behaviors.

Higher Order Taylor Methods
Euler's Method for solving differential equations is easy to understand but is not efficient in the sense that it is what is called a first order
method. The error at each step, the local truncation error, is of order , for  the independent variable. The accumulation of the local
truncation errors results in what is called the global error. In order to generalize Euler’s Method, we need to rederive it. Also, since these
methods are typically used for initial value problems, we will cast the problem to be solved as

10.1.2 = x+y,y(0) = 1y′ N = 10

10.1.3 = x+y,y(0) = 1y′ N = 100

n n

= f(x, y). y′′

u = y v= =y′ u′ = = f(x, u)v′ y′′

= vu′

= f(x, u).v′ (10.1.7)

Δx x
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The first step towards obtaining a numerical approximation to the solution of this problem is to divide the -interval, , into 
subintervals,

where

We then seek the numerical solutions

with . Figure  graphically shows how these quantities are related.

Figure : The interval  is divided into  equally spaced subintervals. The exact solution  is shown with the numerical
solution,  with , .

Euler’s Method can be derived using the Taylor series expansion of of the solution  about  for . This is
given by

Here the term  captures all of the higher order terms and represents the error made using a linear approximation to .

Dropping the remainder term, noting that , and defining the resulting numerical approximations by , we have

This is Euler’s Method.

Euler’s Method is not used in practice since the error is of order . However, it is simple enough for understanding the idea of solving
differential equations numerically. Also, it is easy to study the numerical error, which we will show next.

The error that results for a single step of the method is called the local truncation error, which is defined by

A simple computation gives

= f(t, y), y(a) = , t ∈ [a, b].
dy

dt
y0 (10.1.8)

t [a, b] N

= a+ ih, i = 0, 1, … ,N , = a, = b,ti t0 tN

h = .
b−a

N

≈ y ( ) , i = 1, 2, … ,N ,y~i ti

= y ( ) =y~0 t0 y0 10.1.4

10.1.4 [a, b] N y ( )ti
y~i = a+ ihti i = 0, 1, … ,N

y ( +h)ti t = ti i = 1, 2, … ,N

y ( )ti+1 = y ( +h)ti

= y ( ) + ( )h+ ( ) , ∈ ( , ) .ti y′ ti
h2

2
y′′ ξi ξi ti ti+1 (10.1.9)

( )h2

2
y′′ ξi y ( +h)ti

(t) = f(t, y)y′ ≈ y ( )y~i ti

y~i+1

y~0

= +hf ( , ) , i = 0, 1, … ,N −1,y~i ti y~i
= y(a) = .y0 (10.1.10)

h

(h) = −f ( , ) .τi+1

y ( ) −ti+1 y~i
h

ti yi
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Since the local truncation error is of order , this scheme is said to be of order one. More generally, for a numerical scheme of the form

the local truncation error is defined by

The accumulation of these errors leads to the global error. In fact, one can show that if  is continuous, satisfies the Lipschitz condition,

for a particular domain , and

then

Furthermore, if one introduces round-off errors, bounded by , in both the initial condition and at each step, the global error is modified as

Then for small enough steps , there is a point when the round-off error will dominate the error. [See Burden and Faires, Numerical
Analysis for the details.]

Can we improve upon Euler’s Method? The natural next step towards finding a better scheme would be to keep more terms in the Taylor
series expansion. This leads to Taylor series methods of order .

Taylor series methods of order  take the form

where we have defined

However, since , we can write

We note that for , we retrieve Euler’s Method as a special case. We demonstrate a third order Taylor’s Method in the next example.

Apply the third order Taylor’s Method to

and obtain an approximation for  for .

Solution
The third order Taylor’s Method takes the form

(h) = ( ) , ∈ ( , ) .τi+1
h

2
y′′ ξi ξi ti ti+1

h

y~i+1

y~0

= +hF ( , ) , i = 0, 1, … ,N −1,y~i ti y~i
= y(a) = ,y0 (10.1.11)

(h) = −F ( , ) .τi+1

y ( ) −ti+1 y~i
h

ti yi

f

|f (t, ) −f (t, )| ≤ L | − |y2 y1 y2 y1

D ⊂ R2

| (t)| ≤ M , t ∈ [a, b],y′′

∣y ( ) − ≤ ( −1) , i = 0, 1, … ,N .ti y~∣

hM

2L
eL( −a)ti

δ

y ( ) − ≤ ( + )( −1)+ ∣ , i = 0, 1, … ,N .
∣

∣
∣ ti y~∣

1

L

hM

2

δ

h
eL( −a)ti

∣

∣
∣ δ0 eL( −a)ti

h

n

n

y~i+1

y~0

= +h ( , ) , i = 0, 1, … ,N −1,y~i T (n) ti y~i
= ,y0 (10.1.12)

(t, y) = (t) + (t) +⋯ + (t).T (n) y′ h

2
y′′ h(n−1)

n!
y(n)

(t) = f(t, y)y′

(t, y) = f(t, y) + (t, y) +⋯ + (t, y).T (n) h

2
f ′ h(n−1)

n!
f (n−1)

n = 1

 Example 10.1.2

= t+y, y(0) = 1
dy

dt

y(1) h = 0.1

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90282?pdf


10.1.7 https://math.libretexts.org/@go/page/90282

where

and .

In order to set up the scheme, we need the first and second derivative of  :

Inserting these expressions into the scheme, we have

for .

In Figure  we show the results comparing Euler’s Method, the 3rd Order Taylor’s Method, and the exact solution for . In
Table  we provide are the numerical values. The relative error in Euler’s method is about  and that of the 3rd Order Taylor’s
Method is about . Thus, the 3rd Order Taylor’s Method is significantly better than Euler’s Method.

Table : Numerical values for Euler’s Method, 3 rd Order Taylor’s Method, and exact solution for solving Example  with ..
Euler Taylor Exact

y~i+1

y~0

= +h ( , ) , i = 0, 1, … ,N −1,y~i T (3) ti y~i
= ,y0 (10.1.13)

(t, y) = f(t, y) + (t, y) + (t, y)T (3) h

2
f ′ h2

3!
f ′′

f(t, y) = t+y(t)

f(t, y)

(t, y)f ′

(t, y)f ′′

= (t+y)
d

dt
= 1 +y′

= 1 + t+y

= (1 + t+y)
d

dt
= 1 +y′

= 1 + t+y

(10.1.14)

(10.1.15)

y~i+1

y~0

= +h [( + ) + (1 + + ) + (1 + + )] ,y~i ti yi
h

2
ti yi

h2

3!
ti yi

= +h ( + ) + ( + ) (1 + + ) ,y~i ti yi h2 1

2

h

6
ti yi

= ,y0 (10.1.16)

i = 0, 1, … ,N −1

10.1.2 N = 10

10.1.4 7%

0.006%

10.1.4 10.2 N = 10

1.0000 1.0000 1.0000

1.1000 1.1103 1.1103

1.2200 1.2428 1.2428

1.3620 1.3997 1.3997

1.5282 1.5836 1.5836

1.7210 1.7974 1.7974

1.9431 2.0442 2.0442

2.1974 2.3274 2.3275

2.4872 2.6509 2.6511

2.8159 3.0190 3.0192

3.1875 3.4364 3.4366
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Figure : Numerical results for Euler’s Method (filled circle) and 3rd Order Taylor’s Method (open circle) for solving Example 
 as compared to exact solution (solid line).

In the last section we provided some Maple code for performing Euler’s method. A similar code in MATLAB looks like the following:

a=0;  

b=1; 

N=10;  

h=(b-a)/N;  

 

% Slope function  

    f = inline(’t+y’,’t’,’y’);  

    sol = inline(’2*exp(t)-t-1’,’t’);  

 

% Initial Condition  

    t(1)=0;  

    y(1)=1;  

     

% Euler’s Method  

    for i=2:N+1  

        y(i)=y(i-1)+h*f(t(i-1),y(i-1));  

        t(i)=t(i-1)+h;  

    end 

A simple modification can be made for the 3rd Order Taylor’s Method by replacing the Euler’s method part of the preceding code by

% Taylor’s Method, Order 3  

    y(1)=1;  

    h3 = h^2*(1/2+h/6);  

    for i=2:N+1  

        y(i)=y(i-1)+h*f(t(i-1),y(i-1))+h3*(1+t(i-1)+y(i-1));  

        t(i)=t(i-1)+h;  

    end 

While the accuracy in the last example seemed sufficient, we have to remember that we only stopped at one unit of time. How can we be
confident that the scheme would work as well if we carried out the computation for much longer times. For example, if the time unit were
only a second, then one would need 86,400 times longer to predict a day forward. Of course, the scale matters. But, often we need to carry
out numerical schemes for long times and we hope that the scheme not only converges to a solution, but that it converges to the solution to
the given problem. Also, the previous example was relatively easy to program because we could provide a relatively simple form for 

10.1.5
10.1.2
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 with a quick computation of the derivatives of . This is not always the case and higher order Taylor methods in this form
are not typically used. Instead, one can approximate  by evaluating the known function  at selected values of  and ,
leading to Runge-Kutta methods.

Runge-Kutta Methods

As we had seen in the last section, we can use higher order Taylor methods to derive numerical schemes for solving

using a scheme of the form

where we have defined

In this section we will find approximations of  which avoid the need for computing the derivatives.

For example, we could approximate

by

for selected values of , and . This requires use of a generalization of Taylor’s series to functions of two variables. In particular, for
small  and  we have

Furthermore, we need . Since , this can be found using a generalization of the Chain Rule from Calculus III:

Thus,

Comparing this expression to the linear (Taylor series) approximation of af , we have

We see that we can choose

This leads to the numerical scheme

(t, y)T (3) f(t, y)

(t, y)T (n) f(t, y) t y

= f(t, y), y(a) = , t ∈ [a, b],
dy

dt
y0 (10.1.17)

y~i+1

y~0

= +h ( , ) , i = 0, 1, … ,N −1,y~i T (n) ti y~i
= ,y0 (10.1.18)

(t, y) = (t) + (t) +⋯ + (t).T (n) y′ h

2
y′′ h(n−1)

n!
y(n)

(t, y)T (n)

(t, y) = f(t, y) + fracdfdt(t, y)T (2) h

2

(t, y) ≈ af(t+α, y+β)T (2)

a,α β

α β

af(t+α, y+β) = a[f(t, y) + (t, y)α+ (t, y)β
∂f

∂t

∂f

∂y

+ ( (t, y) +2 (t, y)αβ+ (t, y) )]
1

2

f∂2

∂t2
α2 f∂2

∂t∂y

f∂2

∂y2
β2

+ higher order terms.  (10.1.19)

(t, y)
df

dt
y = y(t)

(t, y) = + .
df

dt

∂f

∂t

∂f

∂y

dy

dt

(t, y) = f(t, y) + [ + ] .T (2) h

2

∂f

∂t

∂f

∂y

dy

dt

(t+α, y+β)

T (2)

f + + f
h

2

∂f

∂t

h

2

∂f

∂y

≈ af(t+α, y+β)

≈ af +aα +β .
∂f

∂t

∂f

∂y
(10.1.20)

a = 1, α = , β = f .
h

2

h

2

y~i+1

y~0

= +hf ( + , + f ( , )) , i = 0, 1, … ,N −1,y~i ti
h

2
y~i

h

2
ti y~i

= ,y0 (10.1.21)
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This Runge-Kutta scheme is called the Midpoint Method, or Second Order Runge-Kutta Method, and it has order 2 if all second order
derivatives of  are bounded.

Often, in implementing Runge-Kutta schemes, one computes the arguments separately as shown in the following MATLAB code snippet.
(This code snippet could replace the Euler’s Method section in the code in the last section.)

% Midpoint Method  

    y(1)=1;  

    for i=2:N+1  

        k1=h/2*f(t(i-1),y(i-1));  

        k2=h*f(t(i-1)+h/2,y(i-1)+k1);  

        y(i)=y(i-1)+k2;  

        t(i)=t(i-1)+h;  

    end 

Compare the Midpoint Method with the 2nd Order Taylor’s Method for the problem

Solution
The solution to this problem is . In order to implement the 2nd Order Taylor’s Method, we need

The results of the implementation are shown in Table .

There are other way to approximate higher order Taylor polynomials. For example, we can approximate  using four parameters
by

Expanding this approximation and using

we find that we cannot get rid of  terms. Thus, the best we can do is derive second order schemes. In fact, following a procedure
similar to the derivation of the Midpoint Method, we find that

There are three equations and four unknowns. Therefore there are many second order methods. Two classic methods are given by the
modified Euler method  and Huen’s method , .

Table : Numerical values for 2nd Order Taylor’s Method, Midpoint Method, exact solution, and errors for solving Example  with 
..

Exact Taylor Error Midpoint Error

f(t, y)

 Example 10.1.3

= +y, y(0) = 1, t ∈ [0, 1].y′ t2 (10.1.22)

y(t) = 3 −2 −2t−et t2

T (2)

=

= f(t, y) + (t, y)
h

2
f ′

+y+ (2t+ +y) .t2 h

2
t2

10.1.3

(t, y)T (3)

(t, y) ≈ af(t, y) +bf(t+α, y+βf(t, y).T (3)

(t, y) ≈ f(t, y) + (t, y) + (t, y),T (3) h

2

df

dt

h2

6

df

dt

O ( )h2

a+b = 1, ,αb = , β = α. 
h

2

(a = b = ,α = β = h)1
2

(a = , b =1
4

3
4

α = β = h2
3

10.1.5 10.1.3
N = 10

1.0000 1.0000 0.0000 1.0000 0.0000

1.1055 1.1050 0.0005 1.1053 0.0003

1.2242 1.2231 0.0011 1.2236 0.0006

1.3596 1.3577 0.0019 1.3585 0.0010

1.5155 1.5127 0.0028 1.5139 0.0016
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Exact Taylor Error Midpoint Error

The Fourth Order Runge-Kutta Method, which is most often used, is given by the scheme

Again, we can test this on Example  with . The MATLAB implementation is given by

% Runge-Kutta 4th Order to solve dy/dt = f(t,y), y(a)=y0, on [a,b]  

    clear  

     

    a=0;  

    b=1;  

    N=10;  

    h=(b-a)/N;  

     

% Slope function  

    f = inline(’t^2+y’,’t’,’y’);  

    sol = inline(’-2-2*t-t^2+3*exp(t)’,’t’);  

     

% Initial Condition  

    t(1)=0;  

    y(1)=1;  

     

% RK4 Method  

    y1(1)=1;  

    for i=2:N+1  

        k1=h*f(t(i-1),y1(i-1));  

        k2=h*f(t(i-1)+h/2,y1(i-1)+k1/2);  

        k3=h*f(t(i-1)+h/2,y1(i-1)+k2/2);  

        k4=h*f(t(i-1)+h,y1(i-1)+k3);  

        y1(i)=y1(i-1)+(k1+2*k2+2*k3+k4)/6;  

        t(i)=t(i-1)+h;  

    end 

MATLAB has built-in ODE solvers, such as ode45 for a fourth order Runge-Kutta method. Its implementation is given by

1.6962 1.6923 0.0038 1.6939 0.0023

1.9064 1.9013 0.0051 1.9032 0.0031

2.1513 2.1447 0.0065 2.1471 0.0041

2.4366 2.4284 0.0083 2.4313 0.0053

2.7688 2.7585 0.0103 2.7620 0.0068

3.1548 3.1422 0.0126 3.1463 0.0085

y~0

k1

k2

k3

k4

y~i+1

= ,y0

= hf ( , ) ,ti y~i

= hf ( + , + ) ,ti
h

2
y~i

1

2
k1

= hf ( + , + ) ,ti
h

2
y~i

1

2
k2

= hf ( +h, + ) ,ti y~i k3

= + ( +2 +2 + ) , i = 0, 1, … ,N −1.y~i
1

6
k1 k2 k3 k4

10.1.3 N = 10
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[t,y]=ode45(f,[0 1],1); 

MATLAB has built-in ODE solvers, as do other software packages, like Maple and Mathematica. You should also note that there are
currently open source packages, such as Python based NumPy and Matplotlib, or Octave, of which some packages are contained
within the Sage Project.

In this case  is given by an inline function like in the above RK 4 code. The time interval is entered as  and the 1 is the initial
condition,  

However, ode 45 is not a straight forward  implementation. It is a hybrid method in which a combination of 4 th and 5 th order
methods are combined allowing for adaptive methods to handled subintervals of the integration region which need more care. In this case,
it implements a fourth order Runge-Kutta-Fehlberg method. Running this code for the above example actually results in values for 
and not . If we wanted to have the routine output numerical solutions at specific times, then one could use the following form

tspan=0:h:1;  

[t,y]=ode45(f,tspan,1); 

In Table  we show the solutions which results for Example  comparing the  snippet above with ode45. As you can see
RK  is much better than the previous implementation of the second order RK (Midpoint) Method. However, the MATLAB routine is two
orders of magnitude better that .

Table : Numerical values for Fourth Order Range-Kutta Method, rk45, exact solution, and errors for solving Example  with .
Exact Taylor Error Midpoint Error

0.0000 0.0000

There are many ODE solvers in MATLAB. These are typically useful if  is having difficulty solving particular problems. For the most
part, one is fine using , especially as a starting point. For example, there is ode 23, which is similar to ode 45 but combining a second
and third order scheme. Applying the results to Example  we obtain the results in Table . We compare these to the second
order Runge-Kutta method. The code snippets are shown below.

% Second Order RK Method  

    y1(1)=1; 

    for i=2:N+1  

        k1=h*f(t(i-1),y1(i-1));  

        k2=h*f(t(i-1)+h/2,y1(i-1)+k1/2);  

        y1(i)=y1(i-1)+k2;  

        t(i)=t(i-1)+h;  

    end 

 Note

f [0, 1]

y(0) = 1.

RK4

N = 41

N = 10

10.1.6 10.1.3 RK4

4

RK4

10.1.6 10.1.3 N = 10

1.0000 1.0000 1.0000

1.1055 1.1055 4.5894e − 08 1.1055 −2.5083e − 10

1.2242 1.2242 1.2335e − 07 1.2242 −6.0935e − 10

1.3596 1.3596 2.3850e − 07 1.3596 −1.0954e − 09

1.5155 1.5155 3.9843e − 07 1.5155 −1.7319e − 09

1.6962 1.6962 6.1126e − 07 1.6962 −2.5451e − 09

1.9064 1.9064 8.8636e − 07 1.9064 −3.5651e − 09

2.1513 2.1513 1.2345e − 06 2.1513 −4.8265e − 09

2.4366 2.4366 1.6679e − 06 2.4366 −6.3686e − 09

2.7688 2.7688 2.2008e − 06 2.7688 −8.2366e − 09

3.1548 3.1548 2.8492e − 06 3.1548 −1.0482e − 08

RK4

RK4

10.1.3 10.1.6
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tspan=0:h:1;  

[t,y]=ode23(f,tspan,1); 

Table : Numerical values for Second Order Runge-Kutta Method, rk23, exact solution, and errors for solving Example  with .
Exact Taylor Error Midpoint Error

o.0000 o.0000

0.0003

0.0006

0.0010

0.0016

0.0023

We have seen several numerical schemes for solving initial value problems. There are other methods, or combinations of methods, which
aim to refine the numerical approximations efficiently as if the step size in the current methods were taken to be much smaller. Some
methods extrapolate solutions to obtain information outside of the solution interval. Others use one scheme to get a guess to the solution
while refining, or correcting, this to obtain better solutions as the iteration through time proceeds. Such methods are described in courses in
numerical analysis and in the literature. At this point we will apply these methods to several physics problems before continuing with
analytical solutions.

This page titled 10.1: Ordinary Differential Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

10.1.7 10.1.3 N = 10

1.0000 1.0000 1.0000

1.1055 1.1053 1.1055 2.7409e − 06

1.2242 1.2236 1.2242 8.7114e − 06

1.3596 1.3585 1.3596 1.6792e − 05

1.5155 1.5139 1.5154 2.7361e − 05

1.6962 1.6939 1.6961 4.0853e − 05

1.9064 1.9032 0.0031 1.9063 5.7764e − 05

2.1513 2.1471 0.0041 2.1512 7.8665e − 05

2.4366 2.4313 0.0053 2.4365 0.0001

2.7688 2.7620 0.0068 2.7687 0.0001

3.1548 3.1463 0.0085 3.1547 0.0002
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10.2: The Heat Equation

Finite Difference Method

The heat equation can be solved using separation of variables. However, many partial differential equations cannot be solved
exactly and one needs to turn to numerical solutions. The heat equation is a simple test case for using numerical methods. Here we
will use the simplest method, finite differences.

Let us consider the heat equation in one dimension,

Boundary conditions and an initial condition will be applied later. The starting point is figuring out how to approximate the
derivatives in this equation.

Recall that the partial derivative, , is defined by

Therefore, we can use the approximation

This is called a forward difference approximation.

In order to find an approximation to the second derivative, , we start with the forward difference

Then,

We need to approximate the terms in the numerator. It is customary to use a backward difference approximation. This is given by
letting   in the forward difference form,

Applying this to  evaluated at  and , we have

and

Inserting these expressions into the approximation for , we have

= k .ut uxx

ut

= .
∂u

∂t
lim

Δt→∞

u(x, t+Δt) −u(x, t)

Δt

≈ .
∂u

∂t

u(x, t+Δt) −u(x, t)

Δt
(10.2.1)

uxx

≈ .
∂u

∂x

u(x+Δx, t) −u(x, t)

Δx

≈ .
∂ux
∂x

(x+Δx, t) − (x, t)ux ux

Δx

Δx → −Δx

≈ .
∂u

∂x

u(x, t) −u(x−Δx, t)

Δt
(10.2.2)

ux x = x x = x+Δx

(x, t) ≈ ,ux
u(x, t) −u(x−Δx, t)

Δx

(x+Δx, t) ≈ux
u(x+Δx, t) −u(x, t)

Δx

uxx

u∂2

∂x2
=

∂ux

∂x

≈
(x+Δx, t) − (x, t)ux ux

Δx

≈ −

u(x+Δx,t)−u(x,t)

Δx

Δx

u(x,t)−u(x−Δx,t)

Δx

Δx

= .
u(x+Δx, t) −2u(x, t) +u(x−Δx, t)

(Δx)2
(10.2.3)
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This approximation for  is called the central difference approximation of .

Combining Equation  with  in the heat equation, we have

Solving for , we find

where .

In this equation we have a way to determine the solution at position  and time  given that we know the solution at three
positions, , and  at time .

A shorthand notation is usually used to write out finite difference schemes. The domain of the solution is  and . We
seek approximate values of  at specific positions and times. We first divide the interval  into  subintervals of width 

. Then, the endpoints of the subintervals are given by

Similarly, we take time steps of , at times

This gives a grid of points  in the domain.

At each grid point in the domain we seek an approximate solution to the heat equation, . Equation 
becomes

Equation  is the finite difference scheme for solving the heat equation. This equation is represented by the stencil shown in
Figure . The black circles represent the four terms in the equation,  and .

uxx uxx

(10.2.1) (10.2.3)

≈ k .
u(x, t+Δt) −u(x, t)

Δt

u(x+Δx, t) −2u(x, t) +u(x−Δx, t)

(Δx)2

u(x, t+Δt)

u(x, t+Δt) ≈ u(x, t) +α[u(x+Δx, t) −2u(x, t) +u(x−Δx, t)], (10.2.4)

α = k Δt

(Δx)2

x t+Δt

x, x+Δx x+2Δx t

u(x, t+Δt) ≈ u(x, t) +α[u(x+Δx, t) −2u(x, t) +u(x−Δx, t)]. (10.2.5)

x ∈ [a, b] t ≥ 0

u(x, t) [a, b] N

Δx = (b−a)/N

= a+ iΔx, i = 0, 1, … ,N .xi

Δt

= jΔt, j= 0, 1, 2, …tj

( , )xi tj

≈ u ( , )ui,j xi tj (10.2.5)

≈ +α [ −2 + ] .ui,j+1 ui,j ui+1,j ui,j ui−1,j (10.2.6)

(10.2.7)

10.2.1 ui,jui−1,jui+1,j ui,j+1
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Figure : This stencil indicates the four types of terms in the finite difference scheme in Equation . The black circles
represent the four terms in the equation,  and .

Let’s assume that the initial condition is given by

Then, we have . Knowing these values, denoted by the open circles in Figure , we apply the stencil to generate
the solution on the  row. This is shown in Figure .

10.2.1 (10.2.7)
ui,jui−1,jui+1,j ui,j+1

u(x, 0) = f(x).

= f ( )ui,0 xi 10.2.2

j= 1 10.2.2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90283?pdf


10.2.4 https://math.libretexts.org/@go/page/90283

Figure : Applying the stencil to the row of initial values gives the solution at the next time step.

Further rows are generated by successively applying the stencil on each row, using the known approximations of  at each level.
This gives the values of the solution at the open circles shown in Figure . We notice that the solution can only be obtained at
a finite number of points on the grid.

Figure : Continuation of the process provides solutions at the indicated points.

10.2.2

ui,j
10.2.3

10.2.3
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In order to obtain the missing values, we need to impose boundary conditions. For example, if we have Dirichlet conditions at 
,

or  for , then we can fill in some of the missing data points as seen in Figure .

Figure : Knowing the values of the solution at , we can fill in more of the grid.

The process continues until we again go as far as we can. This is shown in Figure .

x = a

u(a, t) = 0, 

= 0u0,j j= 0, 1, … 10.2.4

10.2.4 x = a

10.2.5
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Figure : Knowing the values of the solution at , we can fill in more of the grid until we stop.

We can fill in the rest of the grid using a boundary condition at . For Dirichlet conditions at ,

or  for , then we can fill in the rest of the missing data points as seen in Figure .

Figure : Using boundary conditions and the initial condition, the grid can be fill in through any time level.

10.2.5 x = a

x = b x = b

u(b, t) = 0,

= 0uN ,j j= 0, 1, … 10.2.6

10.2.6
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We could also use Neumann conditions. For example, let

The approximation to the derivative gives

Then,

or , for . Thus, we know the values at the boundary and can generate the solutions at the grid points as
before.

We now have to code this using software. We can use MATLAB to do this. An example of the code is given below. In this example
we specify the length of the rod, , and the heat constant, . The code is run for .

The grid is created using  subintervals in space and  time steps. This gives  and . Using these
values, we find the numerical scheme constant .

Nest, we define . However, in MATLAB, we cannot have an index of 0 . We need to start with .
Thus, , .

Next, we establish the initial condition. We take a simple condition of

We have enough information to begin the numerical scheme as developed earlier. Namely, we cycle through the time steps using
the scheme. There is one loop for each time step. We will generate the new time step from the last time step in the form

This is done using  and .

At the end of each time loop we update the boundary points so that the grid can be filled in as discussed. When done, we can plot
the final solution. If we want to show solutions at intermediate steps, we can plot the solution earlier.

% Solution of the Heat Equation Using a Forward Difference Scheme  

 

% Initialize Data  

%     Length of Rod, Time Interval  

%     Number of Points in Space, Number of Time Steps  

 

L=1;  

T=0.1;  

k=1;  

N=10;  

M=50;  

dx=L/N; 

dt=T/M; 

alpha=k*dt/dx^2;  

 

% Position  

 

for i=1:N+1  

    x(i)=(i-1)*dx;  

(a, t) = 0.ux

≈ = 0.
∂u

∂x

∣

∣
∣
x=a

u(a+Δx, t) −u(a, t)

Δx

u(a+Δx, t) −u(a, t)

=u0,j u1,j j= 0, 1, …

L = 1 k = 1 t ∈ [0, 0.1]

N = 10 M = 50 dx = Δx dt = Δt

α = kΔt/(Δx)2

= i ∗ dx, i = 0, 1, … ,Nxi i = 1

= (i−1) ∗ dxxi i = 1, 2, … ,N +1

u(x, 0) = sinπx.

= +α [ −2 + ] .unew 
i uold 

i uold 
i+1 uold 

i uold 
i−1 (10.2.7)

u0(i) = unew 
i u1(i) = uold 

i
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end  

 

% Initial Condition  

 

for i=1:N+1  

    u0(i)=sin(pi*x(i));  

end  

 

% Partial Difference Equation (Numerical Scheme)  

 

for j=1:M  

    for i=2:N  

        u1(i)=u0(i)+alpha*(u0(i+1)-2*u0(i)+u0(i-1));  

    end 

    u1(1)=0;  

    u1(N+1)=0;  

    u0=u1;  

end  

 

% Plot solution  

plot(x, u1); 

This page titled 10.2: The Heat Equation is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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10.3: Truncation Error
In the previous section we found a finite difference scheme for numerically solving the one dimensional heat equation. We have
from Equations (10.2.5) and (10.2.7),

where . For points  and , we use the scheme to find approximate values of  at
positions  , and times .

In implementing the scheme we have found that there are errors introduced just like when using Euler’s Method for ordinary
differential equations. These truncations errors can be found by applying Taylor approximations just like we had for ordinary
differential equations. In the schemes  and , we have not use equality. In order to replace the approximation by an
equality, we need t estimate the order of the terms neglected in a Taylor series approximation of the time and space derivatives we
have approximated.

We begin with the time derivative approximation. We used the forward difference approximation (10.2.1),

This can be derived from the Taylor series expansion of  about ,

Solving for , we obtain

We see that we have obtained the forward difference approximation (10.2.1) with the added benefit of knowing something about
the error terms introduced in the approximation. Namely, when we approximate  with the forward difference approximation
(10.2.1), we are making an error of

We have truncated the Taylor series to obtain this approximation and we say that

is a first order approximation in .

In a similar manor, we can obtain the truncation error for the -term. However, instead of starting with the approximation we
used in Equation ??uxx), we will derive a term using the Taylor series expansion of   about . Namely, we begin
with the expansion

We want to solve this equation for . However, there are some obstructions, like needing to know the  term. So, we seek a way
to eliminate lower order terms. On way is to note that replacing  by  gives

u(x, t +Δt)

ui,j+1

≈ u(x, t) +α[u(x +Δx, t) −2u(x, t) +u(x −Δx, t)]

≈ +α [ −2 + ] ,ui,j ui+1,j ui,j ui−1,j

(10.3.1)

(10.3.2)

α = kΔt/(Δx)2 x ∈ [a, b] t ≥ 0 u ( , ) =xi ti ui,j

= a + iΔx, i =xi 0, 1, … , N = jΔt, j = 0, 1, 2, …tj

(10.3.1) (10.3.2)

≈ .
∂u

∂t

u(x, t +Δt) −u(x, t)

Δt
(10.3.3)

u(x, t +Δt) Δt = 0

u(x, t +Δt) = u(x, t) + (x, t)Δt + (x, t)(Δt +O ((Δt ) .
∂u

∂t

1

2!

u∂2

∂t2
)2 )3

(x, t)
∂u

∂t

(x, t) = − (x, t)Δt +O ((Δt ) .
∂u

∂t

u(x, t +Δt) −u(x, t)

Δt

1

2!

u∂2

∂t2
)2

ut

E(x, t, Δt) = − (x, t)Δt +O ((Δt ) .
1

2!

u∂2

∂t2
)2

= +O(Δt)
∂u

∂t

u(x, t +Δt) −u(x, t)

Δt
(10.3.4)

Δt

xux

u(x+ Δx, t) Δx = 0

u(x +Δx, t) = u(x, t) + (x, t)Δx + (x, t)(Δx + (x, t)(Δxux

1

2!
uxx )2 1

3!
uxxx )3

+ (x, t)(Δx +…
1

4!
uxxxx )4 (10.3.5)

uxx ux

Δx −Δx

u(x −Δx, t) = u(x, t) − (x, t)Δx + (x, t)(Δx − (x, t)(Δxux

1

2!
uxx )2 1

3!
uxxx )3

+ (x, t)(Δx +…
1

4!
uxxxx )4 (10.3.6)
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Adding these Taylor series, we have

We can now solve for  to find

Thus, we have that

is the second order in  approximation of .

Combining these results, we find that the heat equation is approximated by

This has local truncation error that is first order in time and second order in space.
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10.4: Stability
Another consideration for numerical schemes for the heat equation is the stability of the scheme. In implementing the finite
difference scheme,

with , one finds that the solution goes crazy when  is too big. In other words, if you try to push the individual
time steps too far into the future, then something goes haywire. We can determine the onset of instability by looking at the solution
of this equation for . [Note: We changed index  to  to avoid confusion later in this section.]

The scheme is actually what is called a partial difference equation for . We could write it in terms of difference, such as 
 and . The furthest apart the time steps are are one unit and the spatial points are two units apart. We

can see this in the stencils in Figure 10.6. So, this is a second order partial difference equation similar to the idea that the heat
equation is a second order partial differential equation. The heat equation can be solved using the method of separation of variables.
The difference scheme can also be solved in a similar fashion. We will show how this can lead to product solutions.

We begin by assuming that , a product of functions of the indices  and . Inserting this guess into the finite
difference equation, we have

Noting that we have a function of  equal to a function of , then we can set each of these to a constant, . Then, we obtain two
ordinary difference equations:

The first equation is a simple first order difference equation and can be solved by iteration:

The second difference equation can be solved by making a guess in the same spirit as solving a second order constant coefficient
differential equation.Namely, let  for some number . This gives

This is an equation foe  in terms of  and . Due to the boundary conditions, we expect to have oscillatory solutions. So, we can
guess that , where  here is the imaginary unit. We assume that , and thus  and . Since 

, we have . We define  theta / , to give  and .

Inserting this value for  into the quadratic equation for , we have

So, we have found that
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and

For the solution to remain bounded, or stable, we need .

Therefore, we have the inequality

Since , the upper bound is obviously satisfied. Since  , the lower bound is satisfied for 
, or . Therefore, the stability criterion is satisfied when
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CHAPTER OVERVIEW

11: A - Calculus Review - What Do I Need to Know From Calculus?

“Ordinary language is totally unsuited for expressing what physics really asserts, since
the words of everyday life are not sufficiently abstract. Only mathematics and
mathematical logic can say as little as the physicist means to say.”

-Bertrand Russell (1872-1970)
Before you begin our study of differential equations perhaps you should review some things from calculus. You definitely need to
know something before taking this class. It is assumed that you have taken Calculus and are comfortable with differentiation and
integration. Of course, you are not expected to know every detail from these courses. However, there are some topics and methods
that will come up and it would be useful to have a handy reference to what it is you should know.

Most importantly, you should still have your calculus text to which you can refer throughout the course. Looking back on that old
material, you will find that it appears easier than when you first encountered the material. That is the nature of learning
mathematics and other subjects. Your understanding is continually evolving as you explore topics more in depth. It does not always
sink in the first time you see it. In this chapter we will give a quick review of these topics. We will also mention a few new methods
that might be interesting.

11.1: Introduction
11.2: Trigonometric Functions
11.3: Hyperbolic Functions
11.4: Derivatives
11.5: Integrals
11.6: Geometric Series
11.7: Power Series
11.8: The Binomial Expansion
11.9: Problems

This page titled 11: A - Calculus Review - What Do I Need to Know From Calculus? is shared under a CC BY-NC-SA 3.0 license and was
authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a
detailed edit history is available upon request.
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11.1: Introduction
There are two main topics in calculus: derivatives and integrals. You learned that derivatives are useful in providing rates of change
in either time or space. Integrals provide areas under curves, but also are useful in providing other types of sums over continuous
bodies, such as lengths, areas, volumes, moments of inertia, or flux integrals. In physics, one can look at graphs of position versus
time and the slope (derivative) of such a function gives the velocity. (See Figure .) By plotting velocity versus time you can
either look at the derivative to obtain acceleration, or you could look at the area under the curve and get the displacement: 

This is shown in Figure .

Figure : Plot of position vs time.

11.1.1

x = vdt∫
t

t0

(11.1.1)
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Figure : Plot of velocity vs time.

Of course, you need to know how to differentiate and integrate given functions. Even before getting into differentiation and
integration, you need to have a bag of functions useful in physics. Common functions are the polynomial and rational functions.
You should be fairly familiar with these. Polynomial functions take the general form 

 where . This is the form of a polynomial of degree . Rational functions, , consist of ratios of polynomials.

Their graphs can exhibit vertical and horizontal asymptotes.

Next are the exponential and logarithmic functions. The most common are the natural exponential and the natural logarithm. The
natural exponential is given by , where . The natural logarithm is the inverse to the exponential,
denoted by . (One needs to be careful, because some mathematics and physics books use  to mean natural exponential,
whereas many of us were first trained to use this notation to mean the common logarithm, which is the ‘ ’. Here we will
use  for the natural logarithm.)

The properties of the exponential function follow from the basic properties for exponents. Namely, we have: 

The relation between the natural logarithm and natural exponential is given by 

Some common logarithmic properties are 

11.1.2

f(x) = + +. . . + x+anx
n an−1x

n−1 a1 a0 (11.1.2)

≠ 0an n f(x) =
g(x)

h(x)

f(x) = ex e ≈ 2.718281828. . .

lnx log
– ––

log base 10

lnx

e0

e−a

eaeb

(ea)b

= 1

=
1

ea

= ea+b

= eab

(11.1.3)

(11.1.4)

(11.1.5)

(11.1.6)

y = ⇔ x = lnyex (11.1.7)
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We will see applications of these relations as we progress through the course.

This page titled 11.1: Introduction is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

ln1

ln
1

a
ln(ab)

ln
a

b

ln
1

b

= 0

= −lna
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= lna−lnb
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11.2: Trigonometric Functions
Another set of useful functions are the trigonometric functions. These functions have probably plagued you since high school. They
have their origins as far back as the building of the pyramids. Typical applications in your introductory math classes probably have
included finding the heights of trees, flag poles, or buildings. It was recognized a long time ago that similar right triangles have
fixed ratios of any pair of sides of the two similar triangles. These ratios only change when the non-right angles change.

Thus, the ratio of two sides of a right triangle only depends upon the angle. Since there are six possible ratios (think about it!), then
there are six possible functions. These are designated as sine, cosine, tangent and their reciprocals (cosecant, secant and cotangent).
In your introductory physics class, you really only needed the first three. You also learned that they are represented as the ratios of
the opposite to hypotenuse, adjacent to hypotenuse, etc. Hopefully, you have this down by now.

You should also know the exact values of these basic trigonometric functions for the special angles , and their
corresponding angles in the second, third and fourth quadrants. This becomes internalized after much use, but we provide these
values in Table  just in case you need a reminder.

Table : Table of Trigonometric Values

0 1 0 0

1

0 1

The problems students often have using trigonometric functions in later courses stem from using, or recalling, identities. We will
have many an occasion to do so in this class as well. What is an identity? It is a relation that holds true all of the time. For example,
the most common identity for trigonometric functions is the Pythagorean identity 

 This holds true for every angle ! An even simpler identity is 

Other simple identities can be derived from the Pythagorean identity. Dividing the identity by , or , yields 

 

Several other useful identities stem from the use of the sine and cosine of the sum and difference of two angles. Namely, we have
that 

 Note that the upper (lower) signs are taken together.

Evaluate .

Solution

θ = 0, , , ,π
6

π
3

π

4
π
2

11.2.1

11.2.1

θ cosθ sinθ tanθ

π

6
3√

2

1
2

3√

3

π

3
1
2

3√

2
3
–

√

π

4
2√

2

2√

2

π

2
undefined

θ+ θ = 1sin2 cos2 (11.2.1)

θ

tanθ =
sinθ

cosθ
(11.2.2)

θcos2 si θn2

θ+1tan2

1 + θcot2

= θsec2

= θcsc2

(11.2.3)

(11.2.4)

sin(A±B)

cos(A±B)

= sinA cosB±sinB cosA

= cosA cosB±sinA sinB

(11.2.5)

(11.2.6)

 Example 11.2.1

sin π
12
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The double angle formulae are found by setting : 

Using Equation , we can rewrite  as 

 These, in turn, lead to the half angle formulae. Solving for  and , we find that 

Evaluate . In the last example, we used the sum/difference identities to evaluate a similar expression. We could have also
used a half angle identity.

Solution

In this example, we have 

So, . This is not the simplest form and is called a nested radical. In fact, if we proceeded using the
difference identity for cosines, then we would obtain 

 So, how does one show that these answers are the same?

It is useful at times to know when one can reduce square roots of such radicals, called denesting. More generally, one seeks
to write . Following the procedure in this example, one has  and 

 As long as  is a perfect square, there is a chance to reduce the expression to a simpler form.

sin
π

12
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π

4

= sin cos −sin cos
π
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4
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3

= −
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–

√

2

2
–

√

2

2
–

√

2

1

2

= ( −1)
2
–

√

4
3
–

√ (11.2.7)

A = B

sin(2A)

cos(2A)

= 2 sinA cosB

= A− Acos2 sin2

(11.2.8)

(11.2.9)

(11.2.13) (11.2.21)

cos(2A) = 2 A−1cos2

= 1 −2 Asin2

(11.2.10)

(11.2.11)

Acos2 si An2

Asin2

Acos2

=
1 −cos 2A

2

=
1 +cos 2A

2

(11.2.12)

(11.2.13)

 Example 11.2.2
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Let’s focus on the factor . We seek to write this in the form . Equating the two expressions and squaring, we
have 

 In order to solve for  and , it would seem natural to equate the coefficients of  and the remaining terms. We obtain a
system of two nonlinear algebraic equations, 

Solving the second equation for , and substituting the result into the first equation, we find 

 This fourth order equation has four solutions 

 and 

 Thus, 

 and 

 Of the four solutions, two are negative and we know the value of the cosine for this angle has to be positive. The remaining
two solutions are actually equal! A quick computation will verify this 

 We could have bypassed this situation be requiring that the solutions for  and  were not simply proportional to  like they
are in the second case.

Finally, another useful set of identities are the product identities. For example, if we add the identities for  and 
, the second terms cancel and we have

2 + 3
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√
− −−−−−

√ c+d 3
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√ )2
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√ (11.2.15)
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 Thus, we have that 

 

Similarly, we have 

 and 

These boxed equations are the most common trigonometric identities. They appear often and should just roll off of your tongue.

We will also need to understand the behaviors of trigonometric functions. In particular, we know that the sine and cosine functions
are periodic. They are not the only periodic functions, as we shall see. [Just visualize the teeth on a carpenter’s saw.] However, they
are the most common periodic functions.

A periodic function  satisfies the relation 

 for some constant . If  is the smallest such number, then  is called the period. Both the sine and cosine functions have period 
. This means that the graph repeats its form every  units. Similarly,  and  have the common period . We

will make use of this fact in later chapters.

Related to these are the inverse trigonometric functions. For example, , or . Inverse functions give
back angles, so you should think 

 Also, you should recall that  is only a function if . Similar relations exist for 
 and .

In Feynman’s Surely You’re Joking Mr. Feynman!, Richard Feynman (1918-1988) talks about his invention of his own notation
for both trigonometric and inverse trigonometric functions as the standard notation did not make sense to him.

Once you think about these functions as providing angles, then you can make sense out of more complicated looking expressions,
like . Such expressions often pop up in evaluations of integrals. We can untangle this in order to produce a simpler
form by referring to expression .  is simple an angle whose sine is . Knowing the sine is the opposite side of
a right triangle divided by its hypotenuse, then one just draws a triangle in this proportion as shown in Figure . Namely, the
side opposite the angle has length  and the hypotenuse has length . Using the Pythagorean Theorem, the missing side (adjacent
to the angle) is simply . Having obtained the lengths for all three sides, we can now produce the tangent of the angle as 

sinA cosB = (sin(A+B) +sin(A−B))
1

2
(11.2.21)

cosA cosB = (cos(A+B) +cos(A−B))
1

2
(11.2.22)

sinA sinB = (cos(A−B) −cos(A+B))
1

2
(11.2.23)

f(x)

f(x+p) = f(x), for all x

p p p

2π 2π sinbx cos bx p = 2π
b

f(x) = xsin−1 f(x) = arcsinx

θ = x ⇔ x = sinθsin−1 (11.2.24)

y = x = arcsinxsin−1 − ≤ x ≤π
2

π
2

y = x = arccosxcos−1 x = arctanxtan−1

 Note

tan( x)sin−1

(11.2.24) θ = xsin−1 x

11.2.1
x 1

1 −x2
− −−−−

√

tan( x) = .sin−1 x

1 −x2
− −−−−

√
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Figure : .
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11.3: Hyperbolic Functions
So, are there any other functions that are useful in physics? Actually, there are many more. However, you have probably not see
many of them to date. We will see by the end of the semester that there are many important functions that arise as solutions of some
fairly generic, but important, physics problems. In your calculus classes you have also seen that some relations are represented in
parametric form. However, there is at least one other set of elementary functions, which you should already know about. These are
the hyperbolic functions. Such functions are useful in representing hanging cables, unbounded orbits, and special traveling waves
called solitons. They also play a role in special and general relativity.

Solitons are special solutions to some generic nonlinear wave equations. They typically experience elastic collisions and play
special roles in a variety of fields in physics, such as hydrodynamics and optics. A simple soliton solution is of the form 

We will later see the connection between the hyperbolic and trigonometric functions in Chapter 8.

Figure : Plots of  and . Note that , , and .

Hyperbolic functions are actually related to the trigonometric functions, as we shall see after a little bit of complex function theory.
For now, we just want to recall a few definitions and identities. Just as all of the trigonometric functions can be built from the sine
and the cosine, the hyperbolic functions can be defined in terms of the hyperbolic sine and hyperbolic cosine (shown in Figure 

):

 There are four other hyperbolic functions. These are defined in terms of the above functions similar to the relations between the
trigonometric functions. We have 

 Solitons

u(x, t) = 2 η (x −4 t) .η2 sech2 η2

 Note

11.3.1 cosh x sinh x sinh 0 = 0 cosh 0 = 1 cosh x ≥ 1

11.3.1

sinhx

coshx

= ,
−ex e−x

2

= .
+ex e−x

2

(11.3.1)

(11.3.2)
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There are also a whole set of identities, similar to those for the trigonometric functions. For example, the Pythagorean identity for
trigonometric functions, , is replaced by the identity 

 This is easily shown by simply using the definitions of these functions. This identity is also useful for providing a parametric set of
equations describing hyperbolae. Letting  and , one has 

A list of commonly needed hyperbolic function identities are given by the following: 

 Note the similarity with the trigonometric identities. Other identities can be derived from these.

There also exist inverse hyperbolic functions and these can be written in terms of logarithms. As with the inverse trigonometric
functions, we begin with the definition 

 The aim is to write  in terms of  without using the inverse function. First, we note that 

 Next we solve for . This is done by noting that  and rewriting the previous equation as 

 This equation is in quadratic form which we can solve using the quadratic formula as 

 (There is only one root as we expect the exponential to be positive.)

The final step is to solve for , 

tanhx = = ,
1

coshx

2

+ex e−x

sechx = = ,
1

coshx

2

+ex e−x

cschx = = ,
1

sinhx

2

−ex e−x

cothx = = .
1

tanhx

+ex e−x

−ex e−x

(11.3.3)

(11.3.4)

(11.3.5)

(11.3.6)

θ + θ = 1sin2 cos2

x − x = 1.cosh2 sinh2

x = a cosh t y = b sinh t

− = t − t = 1.
x2

a2

y2

b2
cosh2 sinh2

x − xcosh2 sinh2

x + xtanh2 sech2

cosh(A ±B)

sinh(A ±B)

cosh2x

sinh2x

xcosh2

xsinh2

= 1,

= 1,

= coshA coshB ±sinhA sinhB,

= sinhA coshB ±sinhB coshA,

= x + x,cosh2 sinh2

= 2 sinhx coshx,

= (1 +cosh2x),
1

2

= (cosh2x −1).
1

2

(11.3.7)

(11.3.8)

(11.3.9)

(11.3.10)

(11.3.11)

(11.3.12)

(11.3.13)

(11.3.14)

y = x ⇔ x = sinhy.sinh−1 (11.3.15)

y x

x = ( − ) .
1

2
ey e−y (11.3.16)

ey =e−y 1
ey

0 = −2x −1.( )ey 2 ey (11.3.17)

= x + .ey 1 +x2− −−−−
√

y

y = ln(x + ).1 +x2− −−−−
√ (11.3.18)
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The inverse hyperbolic functions are given by 
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 Inverse Hyperbolic Functions

xsinh−1

xcosh−1

xtanh−1

= ln(x + )1 +x2− −−−−
√

= ln(x + )−1x2− −−−−
√

= ln
1

2

1 +x

1 −x
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11.4: Derivatives
Now that we know some elementary functions, we seek their derivatives. We will not spend time exploring the appropriate limits in
any rigorous way. We are only interested in the results. We provide these in Table . We expect that you know the meaning of
the derivative and all of the usual rules, such as the product and quotient rules.

Table : Table of Common Derivatives (  is a constant).

Function Derivative

0

Also, you should be familiar with the Chain Rule. Recall that this rule tells us that if we have a composition of functions, such as
the elementary functions above, then we can compute the derivative of the composite function. Namely, if , then 

Differentiate .

Solution

This is a composition of three functions, , where  , and . Then
the derivative becomes

This page titled 11.4: Derivatives is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

11.4.1

11.4.1 a

a

xn nxn−1

eax aeax

lnax 1
x

sinax acosax

cosax −asinax

tanax a axsec2

cscax −acscaxcotax

secax asecax tanax

cotax −a axcsc2

sinhax acoshax

coshax asinhax

tanhax a axsech2

cschax −acschaxcothax

sechax −asechax tanhax

cothax −a axcsch2

h(x) = f(g(x))

= (f(g(x))) = = (g(x)) (x).
dh

dx

d

dx

df

dg

∣

∣
∣
g(x)

dg

dx
f ′ g′ (11.4.1)

 Example 11.4.1

H(x) = 5 cos(π tanh2 )x2

H(x) = f(g(h(x))) f(x) = 5 cosx, g(x) = π tanhx h(x) = 2x2

(x)H ′ = 5 (−sin(π tanh2 )) ((π tanh2 ))x2 d

dx
x2

= −5π sin(π tanh2 ) 2 (2 )x2 sech2 x2 d

dx
x2

= −20πx sin(π tanh2 ) 2 .x2 sech2 x2 (11.4.2)
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11.5: Integrals
Integration is typically a bit harder. Imagine being given the last result in (11.4.2) and having to figure out what was differentiated
in order to get the given function. As you may recall from the Fundamental Theorem of Calculus, the integral is the inverse
operation to differentiation: 

It is not always easy to evaluate a given integral. In fact some integrals are not even doable! However, you learned in calculus that
there are some methods that could yield an answer. While you might be happier using a computer algebra system, such as Maple or
WolframAlpha.com, or a fancy calculator, you should know a few basic integrals and know how to use tables for some of the more
complicated ones. In fact, it can be exhilarating when you can do a given integral without reference to a computer or a Table of
Integrals. However, you should be prepared to do some integrals using what you have been taught in calculus. We will review a
few of these methods and some of the standard integrals in this section.

First of all, there are some integrals you are expected to know without doing any work. These integrals appear often and are just an
application of the Fundamental Theorem of Calculus to the previous Table 11.4.1. The basic integrals that students should know off
the top of their heads are given in Table .

These are not the only integrals you should be able to do. We can expand the list by recalling a few of the techniques that you
learned in calculus, the Method of Substitution, Integration by Parts, integration using partial fraction decomposition, and
trigonometric integrals, and trigonometric substitution. There are also a few other techniques that you had not seen before. We will
look at several examples.

Evaluate .

Solution

When confronted with an integral, you should first ask if a simple substitution would reduce the integral to one you know how
to do.

The ugly part of this integral is the  under the square root. So, we let .

Noting that when , we have . For our example,  .

Looking at the integral, part of the integrand can be written as . Then, the integral becomes 

The substitution has converted our integral into an integral over . Also, this integral is doable! It is one of the integrals we
should know. Namely, we can write it as 

 This is now easily finished after integrating and using the substitution variable to give 

 Note that we have added the required integration constant and that the derivative of the result easily gives the original
integrand (after employing the Chain Rule).

Table : Table of Common Integrals.

Function Indefinite Integral

∫ dx = f(x) +C.
df

dx
(11.5.1)

11.5.1

 Example 11.5.1

∫ dxx

+1x2√

+1x2 u = +1x2

u = f(x) du = (x)dxf ′ du = 2xdx

xdx = udu1
2

∫ dx = ∫ .
x

+1x2
− −−−−

√

1

2

du

u−−√

u

∫ = ∫ du.
1

2

du

u−−√

1

2
u−1/2

∫ dx = +C = +C.
x

+1x2− −−−−
√

1

2

u1/2

1
2

+1x2− −−−−
√

11.5.1

a ax
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Function Indefinite Integral

Often we are faced with definite integrals, in which we integrate between two limits. There are several ways to use these limits.
However, students often forget that a change of variables generally means that the limits have to change.

Evaluate .

Solution

This is the last example but with integration limits added. We proceed as before. We let . As  goes from  to 
takes values from  to . So, this substitution gives 

When you becomes proficient at integration, you can bypass some of these steps. In the next example we try to demonstrate the
thought process involved in using substitution without explicitly using the substitution variable. Example .

Evaluate 

Solution

As with the previous example, one sees that the derivative of  is proportional to , which is in the numerator of the
integrand. Thus a substitution would give an integrand of the form . So, we expect the answer to be proportional to 

. The starting point is therefore, 

 where  is a constant to be determined.

xn xn+1

n+1

eax
1
a
eax

1
x

lnx

sinax − cosax1
a

cosax sinax1
a

axsec2 tanax1
a

sinhax coshax1
a

coshax sinhax1
a

axsech2 tanhax1
a

secx ln|secx + tanx|

1
a+bx

ln(a+ bx)1
b

1
+a2 x2

1
a

tan−1 x
a

1

−a2 x2√ sin−1 x
a

1

x −x2 a2√
1
a

sec−1 x
a

1

−x2 a2√ = ln + xcosh−1 x
a

∣∣ −x2 a2− −−−−−
√ ∣∣

 Example 11.5.2

dx∫ 2
0

x

+1x2√

u = +1x2 x 0 2, u
1 5

dx = = = −1.∫
2

0

x

+1x2
− −−−−

√

1

2
∫

5

1

du

u−−√
|u−−√
5
1 5

–
√

11.5.3

 Example 11.5.3

dx∫ 2
0

x

9+4x2√

9 +4x2 x

u−1/2

=u−−√ 9 +4x2
− −−−−−

√

∫ dx = A ,
x

9 +4x2
− −−−−−

√
9 +4x2− −−−−−

√

A
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We can determine  through differentiation since the derivative of the answer should be the integrand. Thus, 

 Comparing this result with the integrand, we see that the integrand is obtained when . Therefore, 

 

We now complete the integral, 

The function 

 is called the Gudermannian and connects trigonometric and hyperbolic functions. This function was named after Christoph
Gudermann (  ), but introduced by Iohann Heinrich Lambert (  ), who was one of the first to
introduce hyperbolic functions.

Evaluate .

Solution

This integral can be performed by first using the definition of  followed by a simple substitution. 

Now, we let  and . Then, 

11.5.1 Integration by Parts
When the Method of Substitution fails, there are other methods you can try. One of the most used is the Method of Integration by
Parts. Recall the Integration by Parts Formula: 

 The idea is that you are given the integral on the left and you can relate it to an integral on the right. Hopefully, the new integral is
one you can do, or at least it is an easier integral than the one you are trying to evaluate.

A

A
d

dx
(9 +4 )x2

1

2 = A ( ) (8x)(9 +4 )x2 −
1

2
1

2

= 4xA(9 +4 )x2 −
1

2 (11.5.2)

A = 1
4

∫ dx = .
x

9 +4x2
− −−−−−

√

1

4
9 +4x2− −−−−−√

dx = [5 −3] = .∫
2

0

x

9 +4x2
− −−−−−

√

1

4

1

2

 Note

gd(x) = = 2 −∫
x

0

dx

coshx
tan−1 ex

π

2

1798 −1852 1728 −1777

 Example 11.5.4

∫ dx

cosh x

coshx

∫
dx

coshx
= ∫ dx

2

+ex e−x

= ∫ dx.
2ex

+1e2x
(11.5.3)

u = ex du = dxex

∫
dx

coshx
= ∫ du

2

1 +u2

= 2 u+Ctan−1

= 2 +C.tan−1 ex (11.5.4)

∫ udv= uv−∫ vdu (11.5.5)
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However, you are not usually given the functions  and . You have to determine them. The integral form that you really have is a
function of another variable, say . Another form of the Integration by Parts Formula can be written as 

 This form is a bit more complicated in appearance, though it is clearer than the  form as to what is happening. The derivative
has been moved from one function to the other. Recall that this formula was derived by integrating the product rule for
differentiation. (See your calculus text.)

Often in physics one needs to move a derivative between functions inside an integrand. The key - use integration by parts to
move the derivative from one function to the other under an integral.

These two formulae can be related by using the differential relations 

 This also gives a method for applying the Integration by Parts Formula.

Consider the integral .

Solution

We choose  and  . This gives the correct left side of the Integration by Parts Formula. We next determine 
and  : 

 We note that one usually does not need the integration constant. Inserting these expressions into the Integration by Parts
Formula, we have 

We see that the new integral is easier to do than the original integral. Had we picked  and , then the
formula still works, but the resulting integral is not easier.

For completeness, we finish the integration. The result is 

As always, you can check your answer by differentiating the result, a step students often forget to do. Namely, 

 So, we do get back the integrand in the original integral.

We can also perform integration by parts on definite integrals. The general formula is written as 

u v

x

∫ f(x) (x)dx = f(x)g(x) −∫ g(x) (x)dx.g′ f ′ (11.5.6)

u−v

 Note

u = f(x) → du = (x)dxf ′

v= g(x) → dv= (x)dx.g′ (11.5.7)

 Example 11.5.5

∫ x sin2xdx

u = x dv= sin2xdx v

du

du = dx = dx,
du

dx

v= ∫ dv= ∫ sin2xdx = − cos 2x.
1

2

∫ x sin2xdx = − x cos 2x+ ∫ cos 2xdx.
1

2

1

2

u = sin2x dv= xdx

∫ x sin2xdx = − x cos 2x+ sin2x+C. 
1

2

1

4

(− x cos 2x+ sin2x+C)
d

dx

1

2

1

4
= − cos 2x+x sin2x+ (2 cos 2x)

1

2

1

4

= x sin2x.  (11.5.8)

f(x) (x)dx = − g(x) (x)dx. ∫
b

a

g′ f(x)g(x)|ba ∫
b

a

f ′ (11.5.9)
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Consider the integral 

Solution

This will require two integrations by parts. First, we let  and . 

 Inserting into the Integration by Parts Formula, we have 

We note that the resulting integral is easier that the given integral, but we still cannot do the integral off the top of our head
(unless we look at Example 3!). So, we need to integrate by parts again. (Note: In your calculus class you may recall that there
is a tabular method for carrying out multiple applications of the formula. We will show this method in the next example.)

We apply integration by parts by letting  and . This gives  and . Therefore, we
have 

The final result is 

There are other ways to compute integrals of this type. First of all, there is the Tabular Method to perform integration by parts. A
second method is to use differentiation of parameters under the integral. We will demonstrate this using examples.

Compute the integral  using the Tabular Method.

Solution

First we identify the two functions under the integral,  and . We then write the two functions and list the derivatives and
integrals of each, respectively. This is shown in Table . Note that we stopped when we reached zero in the left column.

Next, one draws diagonal arrows, as indicated, with alternating signs attached, starting with . The indefinite integral is then
obtained by summing the products of the functions at the ends of the arrows along with the signs on each arrow: 

 To find the definite integral, one evaluates the antiderivative at the given limits. 

 Example 11.5.6

cosxdx.∫
π

0
x2

u = x2 dv= cosx

du = 2xdx. v= sinx

cosxdx∫
π

0
x2 = −2 x sinxdxsinxx2 ∣∣

π

0
∫

π

0

= −2 x sinxdx.∫
π

0
(11.5.10)

U = x dV = sinxdx dU = dx V = −cosx

x sinxdx∫
π

0
= − + cosxdxx cosx|π0 ∫

π

0

= π+ sinx|π0
= π. (11.5.11)

cosxdx = −2π. ∫
π

0
x2

 Example 11.5.7

cosxdx∫ π

0 x2

x2 cosx
11.5.2

+

∫ cosxdx = sinx+2x cosx−2 sinx+C.x2 x2

cosxdx∫
π

0
x2 = [ sinx+2x cosx−2 sinx]x2 π

0

= ( sinπ+2π cosπ−2 sinπ)−0π2

= −2π. (11.5.12)
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Actually, the Tabular Method works even if a zero does not appear in the left column. One can go as far as possible, and if a zero
does not appear, then one needs only integrate, if possible, the product of the functions in the last row, adding the next sign in the
alternating sign progression. The next example shows how this works.

Table : Tabular Method

Use the Tabular Method to compute .

Solution

As before, we first set up the table as shown in Table .

Table : Tabular Method, showing a nonterminating example.

Putting together the pieces, noting that the derivatives in the left column will never vanish, we have 

 The integral on the right is a multiple of the one on the left, so we can combine them, 

 or 

11.5.2 Differentiation Under the Integral

Another method that one can use to evaluate this integral is to differentiate under the integral sign. This is mentioned in the Richard
Feynman’s memoir Surely You’re Joking, Mr. Feynman!. In the book Feynman recounts using this "trick" to be able to do integrals
that his MIT classmates could not do. This is based on a theorem found in Advanced Calculus texts. Reader’s unfamiliar with
partial derivatives should be able to grasp their use in the following example.

Let the functions  and  be continuous in both , and , in the region of the  plane which includes 
, where the functions  and  are continuous and have continuous derivatives for 

. Defining 

11.5.2

 Example 11.5.8

∫ sin3xdxe2x

11.5.3

11.5.3

∫ sin3xdx =( sin3x− cos 3x) +∫ (−9 sin3x)( ) dx.e2x 1

2

3

4
e2x 1

4
e2x

∫ sin3xdx =( sin3x− cos 3x) ,
13

4
e2x 1

2

3

4
e2x

∫ sin3xdx =( sin3x− cos 3x) .e2x 2

13

3

13
e2x

 Theorem 11.5.1

f(x, t)
∂f(x,t)

∂x
t x (t, x)

a(x) ≤ t ≤ b(x), ≤ x ≤x0 x1 a(x) b(x)
≤ x ≤x0 x1
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 then 

 for . This is a generalized version of the Fundamental Theorem of Calculus.

In the next examples we show how we can use this theorem to bypass integration by parts.

Use differentiation under the integral sign to evaluate .

Solution

First, consider the integral 

 Then, 

 So, 

 Evaluating this result at , we have 

The reader can verify this result by employing the previous methods or by just differentiating the result.

We will do the integral  once more.

Solution

First, consider the integral 

F (x) ≡ f(x, t)dt,∫
b(x)

a(x)

dF (x)

dx
=( ) +( ) + f(x, t)dt

∂F

∂b

db

dx

∂F

∂a

da

dx
∫

b(x)

a(x)

∂

∂x

= f(x, b(x)) (x) −f(x, a(x)) (x) + f(x, t)dt.b′ a′ ∫
b(x)

a(x)

∂

∂x
(11.5.13)

≤ x ≤x0 x1

 Example 11.5.9

∫ x dxex

I(x, a) = ∫ dx = .eax
eax

a

= ∫ x dx
∂I(x, a)

∂a
eax

∫ x dxeax =
∂I(x, a)

∂a

= (∫ dx)
∂

∂a
eax

= ( )
∂

∂a

eax

a

=( − )
x

a

1

a2
eax (11.5.14)

a = 1

∫ x dx = (x−1) .ex ex

 Example 11.5.10

cosxdx∫ π

0
x2
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 Differentiating the integral  with respect to a twice gives 

 Evaluation of this result at  leads to the desired result. Namely, 

11.5.3 Trigonometric Integrals

Other types of integrals that you will see often are trigonometric integrals. In particular, integrals involving powers of sines and
cosines. For odd powers, a simple substitution will turn the integrals into simple powers.

For example, consider 

Solution

This can be rewritten as 

 Let . Then, . Since , we have 

 A quick check confirms the answer: 

I(a) ≡ cosaxdx∫
π

0

=
sinax

a

∣
∣
∣
π

0

= .
sinaπ

a
(11.5.15)

I(a)

= − cosaxdx.
I(a)d2

da2
∫

π

0
x2 (11.5.16)

a = 1

cosxdx∫
π

0
x2 = −

I(a)d2

da2

∣

∣
∣
a=1

= − ( )
d2

da2

sinaπ

a

∣

∣
∣
a=1

= − ( )
d

da

aπ cosaπ−sinaπ

a2

∣

∣
∣
a=1

= −( )
sinaπ+2aπ cosaπ−2 sinaπa2π2

a3

∣

∣
∣
a=1

= −2π. (11.5.17)

 Example 11.5.11

∫ xdx.cos3

∫ xdx = ∫ x cosxdx.cos3 cos2

u = sinx du = cosxdx x = 1 − xcos2 sin2

∫ xdxcos3 = ∫ x cosxdxcos2

= ∫ (1 − )duu2

= u− +C
1

3
u3

= sinx− x+C.
1

3
sin3 (11.5.18)
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Even powers of sines and cosines are a little more complicated, but doable. In these cases we need the half angle formulae
(11.2.12)-(11.2.13).

As an example, we will compute 

Solution

Substituting the half angle formula for , we have 

Recall that RMS averages refer to the root mean square average. This is computed by first computing the average, or mean, of
the square of some quantity. Then one takes the square root. Typical examples are RMS voltage, RMS current, and the average
energy in an electromagnetic wave. AC currents oscillate so fast that the measured value is the RMS voltage.

We note that this result appears often in physics. When looking at root mean square averages of sinusoidal waves, one needs the
average of the square of sines and cosines. Recall that the average of a function on interval  is given as 

 So, the average of  over one period is 

The root mean square is then found by taking the square root, .

11.5.4 Trigonometric Function Substitution

Another class of integrals typically studied in calculus are those involving the forms , or . These can
be simplified through the use of trigonometric substitutions. The idea is to combine the two terms under the radical into one term
using trigonometric identities. We will consider some typical examples.

Evaluate .

Solution

Since , we perform the sine substitution 

(sinx− x+C)
d

dx

1

3
sin3 = cosx− x cosxsin2

= cosx (1 − x)sin2

= x.cos3 (11.5.19)

 Example 11.5.12

xdx. ∫
2π

0
cos2

xcos2

xdx∫
2π

0
cos2 = (1 +cos 2x)dx

1

2
∫

2π

0

=
1

2
(x− sin2x)

1

2

2π

0

= π (11.5.20)

 Note

[a, b]

f  ave  = f(x)dx.
1

b−a
∫

b

a

(11.5.21)

xcos2

xdx = . 
1

2π
∫

2π

0
cos2 1

2
(11.5.22)

1
2√

,1 −x2
− −−−−

√ 1 +x2
− −−−−

√ −1x2
− −−−−

√

 Example 11.5.13

∫ dx1 −x2
− −−−−

√

1 − θ = θsin2 cos2

x = sinθ, dx = cosθdθ.
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 Then, 

 Using the last example, we have 

 

However, we need to write the answer in terms of . We do this by first using the double angle formula for  and 
 to obtain 

In any of these computations careful attention has to be paid to simplifying the radical. This is because 

 For example, . For , one typically specifies the domain . In this domain we
have .

Similar trigonometric substitutions result for integrands involving  and . The substitutions are summarized in
Table . The simplification of the given form is then obtained using trigonometric identities. This can also be accomplished by
referring to the right triangles shown in Figure .

Table : Standard trigonometric substitutions.

Form Substitution Differential

Figure : Geometric relations used in trigonometric substitution.

∫ dx1 −x2− −−−−
√ = ∫ cosθdθ1 − θsin2− −−−−−−−

√

= ∫ θdθ.cos2 (11.5.23)

∫ dx = (θ− sin2θ)+C.1 −x2− −−−−
√ 1

2

1

2

x sin2θ

cosθ = 1 −x2
− −−−−

√

∫ dx = ( x−x )+C.1 −x2− −−−−
√ 1

2
sin−1 1 −x2− −−−−

√

 Note

= |x|. x2−−√

= = 5(−5)2− −−−−
√ 25

−−
√ x = sinθ −π/2 ≤ θ ≤ π/2

| cosθ| = cosθ

1 +x2
− −−−−

√ −1x2
− −−−−

√

11.5.4
11.5.1

11.5.4

−a2 x2
− −−−−−

√ x = asinθ dx = acosθdθ

+a2 x2
− −−−−−

√ x = atanθ dx = a θdθsec2

−x2 a2
− −−−−−

√ x = asecθ dx = asecθtanθdθ

11.5.1
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Evaluate .

Solution

Let . Then,  and

 So, the integral becomes 

One has to recall, or look up, 

 This gives 

Evaluate .

Solution

In this case one needs the secant substitution. This yields 

Evaluate 

Solution

Again we can use a secant substitution. This yields 

 Example 11.5.14

dx∫ 2
0

+4x2
− −−−−

√

x = 2 tanθ dx = 2 θdθsec2

= = 2 sec θ.+4x2− −−−−
√ 4 θ+4tan2− −−−−−−−−

√

dx = 4 θdθ∫
2

0
+4x2− −−−−

√ ∫
π/4

0
sec3

∫ θdθ = (tanθ sec θ+ln| sec θ+tanθ|) +C.sec3 1

2

dx∫
2

0
+4x2− −−−−

√ = 2[tanθ sec θ+ln| sec θ+tanθ|]
π/4
0

= 2( +ln | +1| −(0 +ln(1)))2
–

√ 2
–

√

= 2( +ln( +1)).2
–

√ 2
–

√ (11.5.24)

 Example 11.5.15

∫ , x ≥ 1dx

−1x2√

∫
dx

−1x2
− −−−−

√
= ∫

sec θ tanθdθ

θ−1sec2
− −−−−−−−

√

= ∫
sec θ tanθdθ

tanθ

= ∫ sec θdθ

= ln(sec θ+tanθ) +C

= ln(x+ )+C.−1x2− −−−−
√ (11.5.25)

 Example 11.5.16

∫ , x ≥ 1dx

x −1x2√

∫
dx

x −1x2
− −−−−

√
= ∫

sec θ tanθdθ

sec θ θ−1sec2
− −−−−−−−

√

= ∫ dθ
sec θ tanθ

sec θ tanθ

= ∫ dθ = θ+C = x+C.sec−1 (11.5.26)
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11.5.5 Hyperbolic Function Substitution
Even though trigonometric substitution plays a role in the calculus program, students often see hyperbolic function substitution
used in physics courses. The reason might be because hyperbolic function substitution is sometimes simpler. The idea is the same
as for trigonometric substitution. We use an identity to simplify the radical.

Evaluate  using the substitution .

Solution

Since , we have . Also, we can use the identity  to rewrite 

The integral can be now be evaluated using these substitutions and some hyperbolic function identities,

In Example  we used a trigonometric substitution and found 

 This is the same result since .

Evaluate  for  using hyperbolic function substitution.

Solution

This integral was evaluated in Example  using the trigonometric substitution  and the resulting integral of 
 had to be recalled. Here we will use the substitution 

Then, 

This is the same result as we had obtained previously, but this derivation was a little cleaner.

Also, we can extend this result to values  by letting . This gives 

 Example 11.5.17

dx∫ 2
0

+4x2
− −−−−

√ x = 2 sinhu

x = 2 sinhu dx = 2 coshudu u− u = 1cosh2 sinh2

= = 2 coshu. +4x2− −−−−
√ 4 u+4sinh2

− −−−−−−−−−
√

dx∫
2

0
+4x2− −−−−

√ = 4 udu∫
1sinh−1

0
cosh2

= 2 (1 +cosh2u)du∫
1sinh−1

0

= 2[u+ sinh2u]
1

2

1sinh−1

0

= 2[u+sinhu coshu] 1sinh−1

0

= 2 ( 1 + ) .sinh−1 2
–

√ (11.5.27)

11.5.14

= 2( +ln( +1)).∫
2

0
+4x2− −−−−

√ 2
–

√ 2
–

√

1 = ln(1 + )sinh−1 2
–

√

 Example 11.5.18

∫ dx

−1x2√
x ≥ 1

11.5.16 x = sec θ
sec θ

x = coshu, dx = sinhudu, = = sinhu.−1x2− −−−−
√ u−1cosh2

− −−−−−−−−
√

∫
dx

−1x2
− −−−−

√
= ∫

sinhudu

sinhu

= ∫ du = u+C

= x+Ccosh−1

= ln(x+ )+C, x ≥ 1
1

2
−1x2− −−−−

√ (11.5.28)

x ≤ −1 x = −coshu
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Combining these results, we have shown 

We have seen in the last example that the use of hyperbolic function substitution allows us to bypass integrating the secant function
in Example  when using trigonometric substitutions. In fact, we can use hyperbolic substitutions to evaluate integrals of
powers of secants. Comparing Examples  and , we consider the transformation . The relation
between differentials is found by differentiation, giving 

 Since 

 we have , therefore 

 In the next example we show how useful this transformation is.

Evaluate  using hyperbolic function substitution.

Solution

From the discussion in the last paragraph, we have 

We can express this result in the usual form by using the logarithmic form of the inverse hyperbolic cosine, 

 The result is 

This example was fairly simple using the transformation . Another common integral that arises often is integrations
of . In a typical calculus class this integral is evaluated using integration by parts. However. that leads to a tricky
manipulation that is a bit scary the first time it is encountered (and probably upon several more encounters.) In the next example,
we will show how hyperbolic function substitution is simpler.

Evaluate  using hyperbolic function substitution.

Solution

First, we consider the transformation  with . Then, 

∫ = ln(x+ )+C, x ≤ −1.
dx

−1x2
− −−−−

√

1

2
−1x2− −−−−

√

∫ = ln(|x| + )+C, ≥ 1.
dx

−1x2
− −−−−

√

1

2
−1x2− −−−−

√ x2

11.5.16
11.5.16 11.5.18 sec θ = coshu

sec θ tanθdθ = sinhudu

θ = θ−1,tanh2 sec2

tanθ = sinhu

dθ = .
du

coshu

 Example 11.5.19

∫ sec θdθ

∫ sec θdθ = ∫ du

= u+C

= (sec θ) +Ccosh−1 (11.5.29)

x = ln(x+ ). cosh−1 −1x2− −−−−
√

∫ sec θdθ = ln(sec θ+tanθ).

sec θ = coshu
θsec3

 Example 11.5.20

∫ θdθsec3

sec θ = coshu dθ = du

cosh u
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 This integral was done in Example , leading to 

While correct, this is not the form usually encountered. Instead, we make the slightly different transformation .
Since , we find . As before, we find 

 Using this transformation and several identities, the integral becomes 

There are many other integration methods, some of which we will visit in other parts of the book, such as partial fraction
decomposition and numerical integration. Another topic which we will revisit is power series.

This page titled 11.5: Integrals is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

∫ θdθ = ∫ .sec3 du

coshu

11.5.4

∫ θdθ = 2 +C.sec3 tan−1 eu

tanθ = sinhu
θ = 1 + θsec2 tan2 sec θ = coshu

dθ = .
du

coshu

∫ θdθsec3 = ∫ uducosh2

= ∫ (1 +cosh2u)du
1

2

= (u+ sinh2u)
1

2

1

2

= (u+sinhu coshu)
1

2

= ( (sec θ) +tanθ sec θ)
1

2
cosh−1

= (sec θ tanθ+ln(sec θ+tanθ)).
1

2
(11.5.30)
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11.6: Geometric Series
Infinite series occur often in mathematics and physics. Two series which occur often are the geometric series and the binomial
series. we will discuss these next.

Geometric series are fairly common and will be used throughout the book. You should learn to recognize them and work with
them.

A geometric series is of the form 

 Here  is the first term and  is called the ratio. It is called the ratio because the ratio of two consecutive terms in the sum is .

For example, 

 is an example of a geometric series.

Solution

We can write this using summation notation, 

 Thus,  is the first term and  is the common ratio of successive terms. Next, we seek the sum of this infinite series,
if it exists.

The sum of a geometric series, when it exists, can easily be determined. We consider the th partial sum: 

 Now, multiply this equation by . 

 Subtracting these two equations, while noting the many cancelations, we have

 Thus, the th partial sums can be written in the compact form 

 The sum, if it exists, is given by . Letting  get large in the partial sum , we need only evaluate 
. From the special limits in the Appendix we know that this limit is zero for . Thus, we have

 Note

a = a +ar +a +… +a +… .∑
n=0

∞

r
n

r
2

r
n (11.6.1)

a r r

 Example 11.6.1

1 + + + +…
1

2

1

4

1

8

1 + + + +… = 1 .
1

2

1

4

1

8
∑
n=0

∞

( )
1

2

n

a = 1 r = 1
2

n

= a +ar +… +a +a .sn r
n−2

r
n−1 (11.6.2)

r

r = ar +a +… +a +a .sn r
2

r
n−1

r
n (11.6.3)

(1 −r) =sn

=

=

(a +ar +… +a +a )r
n−2

r
n−1

−(ar +a +… +a +a )r
2

r
n−1

r
n

a −ar
n

a (1 − )r
n (11.6.4)

n

= .sn

a (1 − )r
n

1 −r
(11.6.5)

S = limn→∞ sn n (11.6.5)

limn→∞ r
n |r| < 1
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The sum of the geometric series exists for  and is given by 

The reader should verify that the geometric series diverges for all other values of . Namely, consider what happens for the separate
cases ,  and .

Next, we present a few typical examples of geometric series.

Solution

In this case we have that  and . Therefore, this infinite series converges and the sum is 

Solution

In this example we first note that the first term occurs for . It sometimes helps to write out the terms of the series, 

 Looking at the series, we see that  and . Since , the geometric series converges. So, the sum of the series is
given by 

Solution

Finally, in this case we do not have a geometric series, but we do have the difference of two geometric series. Of course, we
need to be careful whenever rearranging lutely convergent. (See the Appendix.) infinite series. In this case it is allowed . Thus,
we have 

 Now we can add both geometric series to obtain 

 Geometric Series

|r| < 1

a = |r| < 1.∑
n=0

∞

r
n a

1 −r′
(11.6.6)

r

|r| > 1 r = 1 r = −1

 Example 11.6.2

∑∞
n=0

1
2n

a = 1 r = 1
2

S = = 2.
1

1 − 1
2

 Example 11.6.3

∑∞
k=2

4

3k

k = 2

= + + + +…∑
k=2

∞
4

3k

4

32

4

33

4

34

4

35

a = 4
9

r = 1
3

|r| < 1

S = = . 

4
9

1 − 1
3

2

3

 Example 11.6.4

( − )∑∞
n=1

3
2n

2
5n

1

( − ) = − .∑
n=1

∞ 3

2n

2

5n
∑
n=1

∞ 3

2n
∑
n=1

∞ 2

5n

( − ) = − = 3 − = .∑
n=1

∞
3

2n

2

5n

3
2

1 − 1
2

2
5

1 − 1
5

1

2

5

2
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A rearrangement of terms in an infinite series is allowed when the series is absolutely convergent. (See the Appendix.)

Geometric series are important because they are easily recognized and summed. Other series which can be summed include special
cases of Taylor series and telescoping series. Next, we show an example of a telescoping series.

Solution

The first few terms of this series are 

 It does not appear that we can sum this infinite series. However, if we used the partial fraction expansion 

 then we find the th partial sum can be written as 

 We see that there are many cancelations of neighboring terms, leading to the series collapsing (like a retractable telescope) to
something manageable: 

 Taking the limit as , we find .

This page titled 11.6: Geometric Series is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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11.7: Power Series
Another example of an infinite series that the student has encountered in previous courses is the power series. Examples of such
series are provided by Taylor and Maclaurin series.

Actually, what are now known as Taylor and Maclaurin series were known long before they were named. James Gregory
(1638-1675) has been recognized for discovering Taylor series, which were later named after Brook Taylor (1685-1731).
Similarly, Colin Maclaurin (1698-1746) did not actually discover Maclaurin series, but the name was adopted because of his
particular use of series.

A power series expansion about  with coefficient sequence  is given by . For now we will consider all
constants to be real numbers with  in some subset of the set of real numbers.

Consider the following expansion about  : 

We would like to make sense of such expansions. For what values of  will this infinite series converge? Until now we did not pay
much attention to which infinite series might converge. However, this particular series is already familiar to us. It is a geometric
series. Note that each term is gotten from the previous one through multiplication by . The first term is . So, from
Equation (11.6.6), we have that the sum of the series is given by

Figure : (a) Comparison of  (solid) to  (dashed) for  . (b) Comparison of  (solid) to 
 (dashed) for .

In this case we see that the sum, when it exists, is a simple function. In fact, when  is small, we can use this infinite series to
provide approximations to the function . If  is small enough, we can write

In Figure (a) we see that for small values of  these functions do agree. 

Of course, if we want better agreement, we select more terms. In Figure (b) we see what happens when we do so. The
agreement is much better. But extending the interval, we see in Figure  that keeping only quadratic terms may not be good
enough. Keeping the cubic terms gives better agreement over the interval.

 Note
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Figure : Comparison of  (solid) to  (dashed) and  (dotted) for .

Finally, in Figure  we show the sum of the first 21 terms over the entire interval . Note that there are problems with
approximations near the endpoints of the interval, .

Figure : Comparison of  (solid) to  for . 

11.7.2 1
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Such polynomial approximations are called Taylor polynomials. Thus,  is the third order Taylor
polynomial approximation of .

With this example we have seen how useful a series representation might be for a given function. However, the series
representation was a simple geometric series, which we already knew how to sum. Is there a way to begin with a function and then
find its series representation? Once we have such a representation, will the series converge to the function with which we started?
For what values of  will it converge? These questions can be answered by recalling the definitions of Taylor and Maclaurin series.

A Taylor series expansion of  about  is the series 

 where 

Note that we use  to indicate that we have yet to determine when the series may converge to the given function. A special class of
series are those Taylor series for which the expansion is about . These are called Maclaurin series.

A Maclaurin series expansion of  is a Taylor series expansion of  about , or 

 where 

Expand  about .

Solution

We begin by creating a table. In order to compute the expansion coefficients, , we will need to perform repeated
differentiations of . So, we provide a table for these derivatives. Then, we only need to evaluate the second column at 

 and divide by .

Table 

0

1

2

3

Next, we look at the last column and try to determine a pattern so that we can write down the general term of the series. If there
is only a need to get a polynomial approximation, then the first few terms may be sufficient. In this case, the pattern is obvious:

. So, 

(x) = 1 +x + +T3 x2 x3

f(x) = 1
1−x

x

f(x) x = a

f(x) ∼ (x −a ,∑
n=0

∞

cn )n (11.7.2)

= .cn

(a)f (n)

n!
(11.7.3)

∼
x = 0

f(x) f(x) x = 0

f(x) ∼ ,∑
n=0

∞

cnxn (11.7.4)

= .cn

(0)f (n)

n!
(11.7.5)
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Expand  about .

Solution

Here we seek an expansion of the form . We could create a table like the last example. In fact, the last
column would have values of the form . (You should confirm this.) However, we will make use of the Maclaurin series
expansion for  and get the result quicker. Note that . Now, apply the known expansion for  : 

Expand  about .

Solution

This is the example with which we started our discussion. We can set up a table in order to find the Maclaurin series
coefficients. We see from the last column of the table that we get back the geometric series .

Table 

0 1

1 1

2

3

So, we have found 

We can replace  by equality if we can determine the range of -values for which the resulting infinite series converges. We will
investigate such convergence shortly.

Series expansions for many elementary functions arise in a variety of applications. Some common expansions are provided in Table
.

We still need to determine the values of  for which a given power series converges. The first five of the above expansions
converge for all reals, but the others only converge for .

We consider the convergence of . For  the series obviously converges. Will it converge for other points?
One can prove

If  converges for , then  converges absolutely for all  satisfying .

This leads to three possibilities

1.  may only converge at .
2.  may converge for all real numbers.
3.  converges for  and diverges for  .

 Example 11.7.2
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The number  is called the radius of convergence of the power series and  is called the interval of convergence.
Convergence at the endpoints of this interval has to be tested for each power series.

Table : Common Mclaurin Series Expansions

Series Expansions You Should Know

In order to determine the interval of convergence, one needs only note that when a power series converges, it does so absolutely.
So, we need only test the convergence of . This is easily done using either the ratio test
or the th root test. We first identify the nonnegative terms , using the notation from Section ??. Then, we apply
one of the convergence tests.

For example, the th Root Test gives the convergence condition for  , 

 Since  is independent of , we can factor it out of the limit and divide the value of the limit to obtain 

 Thus, we have found the radius of convergence, .

Similarly, we can apply the Ratio Test. 

 Again, we rewrite this result to determine the radius of convergence: 

Find the radius of convergence of the series .

Solution

Since there is a factorial, we will use the Ratio Test. 

 Since , it is independent of  and thus the series converges for all . We also can say that the radius of convergence is
infinite.

R (a −R, a +R)
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Find the radius of convergence of the series .

Solution

In this example we will use the th Root Test. 

 Thus, we find that we have absolute convergence for . Setting  or , we find that the resulting series do
not converge. , the endpoints are not included in the complete interval of convergence.

In this example we could have also used the Ratio Test. Thus, 

 We have obtained the same result as when we used the th Root Test.

Find the radius of convergence of the series .

Solution

In this example, we have an expansion about . Using the th Root Test we find that 

Solving for  in this inequality, we find . Thus, the radius of convergence is  and the interval of
convergence is .

As for the endpoints, we first test the point . The resulting series is . This is the harmonic
series, and thus it does not converge. Inserting , we get the alternating harmonic series. This series does converge. So,
we have convergence on . However, it is only conditionally convergent at the left endpoint, .

Find an expansion of  about .

Solution

Instead of explicitly computing the Taylor series expansion for this function, we can make use of an already known function.
We first write  as a function of , since we are expanding about ; i.e., we are seeking a series whose terms are
powers of .

This expansion is easily done by noting that . Factoring out a 3 , we can rewrite this expression as a sum of a

geometric series. Namely, we use the expansion for 

 and then we rewrite  as 

 Example 11.7.5
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 Note that  for . So, the expansion becomes 

 This can further be simplified as 

Convergence is easily established. The expansion for  converges for . So, the expansion for  converges for 
. This implies that . Putting this inequality in interval notation, we have that the power series

converges absolutely for . Inserting the endpoints, one can show that the series diverges for both  and 
. You should verify this!

Prove Euler’s Formula: .

Solution

As a final application, we can derive Euler’s Formula, 

 where . We naively use the expansion for  with . This leads us to 

Next we note that each term has a power of . The sequence of powers of  is given as 
. See the pattern? We conclude that 

This gives 

 We recognize the expansions in the parentheses as those for the cosine and sine functions. Thus, we end with Euler’s Formula.

Euler’s Formula, , is an important formula and is used throughout the text.

We further derive relations from this result, which will be important for our next studies. From Euler’s formula we have that for
integer  : 
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3
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3

(11.7.7)
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 We also have 

 Equating these two expressions, we are led to de Moivre’s Formula, named after Abraham de Moivre (  ), 

This formula is useful for deriving identities relating powers of sines or cosines to simple functions. For example, if we take 
in Equation , we find 

 Looking at the real and imaginary parts of this result leads to the well known double angle identities 

Here we see elegant proofs of well known trigonometric identities. 

Replacing  or  leads to the half angle formulae:

 

Trigonometric functions can be written in terms of complex exponentials:

 

We can also use Euler’s Formula to write sines and cosines in terms of complex exponentials. We first note that due to the fact that
the cosine is an even function and the sine is an odd function, we have

Combining this with Euler's Formula, wehave that 

Hyperbolic functions and trigonometric functions are intimately related. 

= = (cos θ + i sinθ .einθ ( )eiθ n
)n

1667 −1754

(cos θ + i sinθ = cos(nθ) + i sin(nθ). )n (11.7.8)

n = 2
(11.7.8)
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We finally note that there is a simple relationship between hyperbolic functions and trigonometric functions. Recall that

 If we let , then we have that  and . Similarly, we can show that  and 
.

This page titled 11.7: Power Series is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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11.8: The Binomial Expansion
Another series expansion which occurs often in examples and applications is the binomial expansion. This is simply the expansion
of the expression  in powers of  and . We will investigate this expansion first for nonnegative integer powers  and then
derive the expansion for other values of . While the binomial expansion can be obtained using Taylor series, we will provide a
more intuitive derivation to show that 

 where the  are called the binomial coefficients.

The binomial expansion is a special series expansion used to approximate expressions of the form  for , or 
 for . 

Lets list some of the common expansions for nonnegative integer powers. 

We now look at the patterns of the terms in the expansions. First, we note that each term consists of a product of a power of  and a
power of . The powers of  are decreasing from  to 0 in the expansion of . Similarly, the powers of  increase from 0 to 

. The sums of the exponents in each term is . So, we can write the  st term in the expansion as . For example, in
the expansion of  the 6th term is . However, we do not yet know the numerical coefficients in the
expansion.

Let’s list the coefficients for the above expansions. 

 This pattern is the famous Pascal’s triangle.  There are many interesting features of this triangle. But we will first ask how each
row can be generated.

Pascal’s triangle is named after Blaise Pascal (1623-1662). While such configurations of numbers were known earlier in
history, Pascal published them and applied them to probability theory.

Pascal’s triangle has many unusual properties and a variety of uses:

Horizontal rows add to powers of 
The horizontal rows are powers of 11 , etc.).
Adding any two successive numbers in the diagonal  results in a perfect square
When the first number to the right of the  in any row is a prime number, all numbers in that row are divisible by that prime
number. The reader can readily check this for the  and  rows.
Sums along certain diagonals leads to the Fibonacci sequence. These diagonals are parallel to the line connecting the first 1
for  row and the 2 in the  row.

(a +b)p a b p

p

(a +b = ,)n ∑
r=0

n

C n
r an−rbr (11.8.1)

C n
r

 Pascal’s Triangle

(a +b)p b ≪ a

(1 +x)p |x| ≪ 1

(a +b)0

(a +b)1
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(a +b)3
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= 1

= a +b

= +2ab +a2 b2

= +3 b +3a +a3 a2 b2 b3

= +4 b +6 +4a +a4 a3 a2b2 b3 b4

⋯ (11.8.2)
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1 2 1
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 Blaise Pascal

2.
(1, 11, 121, 1331

1 −3 −6 −10 −15 −21 −28 …
I

n = 5 n = 7

n = 3 n = 2
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We see that each row begins and ends with a one. The second term and next to last term have a coefficient of . Next we note that
consecutive pairs in each row can be added to obtain entries in the next row. For example, we have for rows  and  that 

 and  :

With this in mind, we can generate the next several rows of our triangle. 

 So, we use the numbers in row  to generate entries in row  : . We then use row  to get
row , etc.

Of course, it would take a while to compute each row up to the desired . Fortunately, there is a simple expression for computing a
specific coefficient. Consider the  th term in the expansion of . Let , for . Then this term is of
the form . We have seen that the coefficients satisfy 

Actually, the binomial coefficients, , have been found to take a simple form, 

 This is nothing other than the combinatoric symbol for determining how to choose  objects  at a time. In the binomial
expansions this makes sense. We have to count the number of ways that we can arrange  products of  with  products of .
There are  slots to place the  s. For example, the  case for  involves the six products: ,
and . Thus, it is natural to use this notation.

Andreas Freiherr von Ettingshausen (1796-1878) was a German mathematician and physicist who in 1826 introduced the

notation . However, the binomial coefficients were known by the Hindus centuries beforehand. 

So, we have found that 

Now consider the geometric series  We have seen that such this geometric series converges for , giving 

 But, . This is a binomial to a power, but the power is not an integer.

It turns out that the coefficients of such a binomial expansion can be written similar to the form in Equation(A.108). This example
suggests that our sum may no longer be finite. So, for  a real number,  and , we generalize Equation  as 

 and see if the resulting series makes sense. However, we quickly run into problems with the coefficients in the series.

Consider the coefficient for  in an expansion of . This is given by 

n

n = 2 n = 3
1 +2 = 3 2 +1 = 3

n = 2 :

n = 3 :

1 2 1

↘ ↙ ↘ ↙

1 3 3 1

(11.8.4)

n

n

n

n

= 3 :

= 4 :

= 5 :

= 6 : 1

1

1

6

1

5

4

15

3

10

6

20

3

10

4

15

1

5

1

6

1

1

(11.8.5)

n = 4 n = 5 1 +4 = 5, 4 +6 = 10 n = 5
n = 6

n

k (a +b)n r = k −1 k = 1, … , n +1
C n

r an−rbr

= + .C n
r C n−1

r C n−1
r−1

C n
r

= ≡( ) .C n
r

n!

(n −r)!r!

n

r

n r

r b n −r a

n b′ r = 2 n = 4 aabb, abab, abba, baab, baba

bbaa

 Andreas Freiherr von Ettingshausen

( )
n

r

(a +b = ( ) .)n ∑
r=0

n n

r
an−rbr (11.8.6)

1 +x + +…x2 |x| < 1

1 +x + +… = .x2 1

1 −x

= (1 −x1
1−x

)−1

p a = 1 b = x (11.8.6)

(1 +x = ( ))p ∑
r=0

∞
p

r
xr (11.8.7)

r = 1 (1 +x)−1
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 But what is  !? By definition, it is 

 This product does not seem to exist! But with a little care, we note that 

 So, we need to be careful not to interpret the combinatorial coefficient literally. There are better ways to write the general binomial
expansion. We can write the general coefficient as 

 With this in mind we now state the theorem:

The general binomial expansion for  is a simple generalization of Equation (A.108). For  real, we have the following
binomial series: 

Often in physics we only need the first few terms for the case that  : 

Approximate  for .

Solution

For  the first approximation is found inserting . Thus, one obtains . This is the Newtonian approximation
and does not provide enough of an approximation for terrestrial speeds. Thus, we need to expand  in powers of .

First, we rewrite  as 

 Using the binomial expansion for , we have 

( ) = = .
−1

1

(−1)!

(−1 −1)!1!

(−1)!

(−2)!1!

(−1)

(−1)! = (−1)(−2)(−3) ⋯ . 

= = −1. 
(−1)!

(−2)!

(−1)(−2)!

(−2)!

( )
p

r
=

p!

(p −r)!r!

=
p(p −1) ⋯ (p −r +1)(p −r)!

(p −r)!r!

= .
p(p −1) ⋯ (p −r +1)

r!
(11.8.8)

 Theorem : General Binomial Expansion11.8.1

(1 +x)p p

(1 +x = , |x| < 1.)p ∑
r=0

∞ p(p −1) ⋯ (p −r +1)

r!
xr (11.8.9)

x ≪ 1

(1 +x = 1 +px + +O ( ) .)p p(p −1)

2
x2 x3 (11.8.10)

 Example 11.8.1

γ = 1

1− v2

c2
√

v ≪ c

v ≪ c v/c = 0 γ = 1
γ v/c

γ

γ = = .
1

1 − v2

c2

− −−−−
√

[1 − ]( )
v

c

2 −1/2

p = −1/2

γ ≈ 1 +(− )(− ) = 1 + .
1

2

v2

c2

v2

2c2
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The factor  is important in special relativity. Namely, this is the factor relating differences in time and length

measurements by observers moving relative inertial frames. For terrestrial speeds, this gives an appropriate approximation.

The average speed of a large commercial jet airliner is about . If you flew for an hour (measured from the ground),
then how much younger would you be than if you had not taken the flight, assuming these reference frames obeyed the
postulates of special relativity?

Solution

This is the problem of time dilation. Let  be the elapsed time in a stationary reference frame on the ground and  be that in
the frame of the moving plane. Then from the Theory of Special Relativity these are related by 

 The time differences would then be 

The plane speed, , is roughly  and . Since , we would need to use the binomial
approximation to get a nonzero result. 

 Thus, you have aged one nanosecond less than if you did not take the flight.

Compute   for  and .

Solution

Inserting these values into a scientific calculator, one finds that 

 In some calculators one might obtain , in other calculators, or computer algebra systems like Maple, one might obtain other
answers. What answer do you get and how accurate is your answer?

The problem with this computation is that  h. Therefore, the computation of  depends on how many digits the
computing device can handle. The best way to get an answer is to use the binomial approximation. Writing , or 

, we have 

 Note

γ = (1 − )v2

c2

−1/2

 Example : Time Dilation Example11.8.2

500mph

Δt Δτ

Δt = γΔτ . 

Δt −Δτ = (1 − )Δtγ−1

=(1 − )Δt.1 −
v2

c2

− −−−−−

√ (11.8.11)

500mph 225 m/s c = 3.00 ×  m/s108 V ≪ c

Δt −Δτ =(1 − )Δt1 −
v2

c2

− −−−−−

√

=(1 −(1 − +…))Δt
v2

2c2

≈ Δt
v2

2c2

= (1h) = 1.01ns.
(225)2

2(3.00 × )108 2
(11.8.12)

 Example : Small differences in large numbers 11.8.3

f(R, h) = −R+R2 h2
− −−−−−−

√ R = 6378.164 km h = 1.0 m

f(6378164, 1) = −6378164 = 1 ×  m.+163781642− −−−−−−−−−−
√ 10−7

0

R ≫ f(R, h)
h = Rx

x = h

R
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 Of course, you should verify how many digits should be kept in reporting the result. 

In the next examples, we generalize this example. Such general computations appear in proofs involving general expansions
without specific numerical values given.

Obtain an approximation to  when a is much larger than , denoted by .

Solution

If we neglect  then . How good of an approximation is this? This is where it would be nice to know the order of
the next term in the expansion. Namely, what is the power of  of the first neglected term in this expansion?

In order to do this we first divide out a as 

 Now we have a small parameter, . According to what we have seen earlier, we can use the binomial expansion to write 

 Thus, we have a sum of terms involving powers of . Since , most of these terms can be neglected. So, we can write 

 Here we used , big-Oh notation, to indicate the size of the first neglected term.

Summarizing, we have 

 Therefore, we can approximate , with an error on the order of . Note that the order of the error
does not include the constant factor from the expansion. We could also use the approximation that , but it is not
typically good enough in applications because the error in this case is of the order .

Approximate  for .

Solution

f(R, h) = −R+R2 h2− −−−−−−
√

= R −R1 +x2− −−−−
√

≃ R[1 + ]−R
1

2
x2

= R
1

2
x2

= = 7.83926 ×  m.
1

2

h

R2
10−8 (11.8.13)

 Example 11.8.4

(a +b)p b a ≫ b

b (a +b ≃)p ap

b/a

(a +b = .)p ap(1 + )
b

a

p

b

a

= ( ) .(1 + )
b

a

n

∑
r=0

∞ p

r
( )

b

a

r

(11.8.14)

b
a

a ≫ b

= 1 +p +O( ) .(1 + )
b

a

p
b

a
( )

b

a

2

O()

(a +b)p = ap(1 + )
b

a

p

= (1 +p +O( ))ap b

a
( )

b

a

2

= +p + O( ) .ap ap b

a
ap ( )

b

a

2

(11.8.15)

(a +b ≃ +pb)p ap ap−1 b2ap−2

(a +b ≃)p ap

bap−1

 Example 11.8.5

f(x) = (a +x −)p ap x ≪ a
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In an earlier example we computed  for   and . We can make use of
the binomial expansion to determine the behavior of similar functions in the form . Inserting the
binomial expression into , we have as  that 

This result might not be the approximation that we desire. So, we could back up one step in the derivation to write a better
approximation as 

We now use this approximation to compute  for   and  in the earlier
example. We let  and . Then, the leading order approximation would be of order 

 Thus, we have 

 where 

 This is the same result we had obtained before. However, we have also an estimate of the size of the error and this might be
useful in indicating how many digits we should trust in the answer.

This page titled 11.8: The Binomial Expansion is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

f(R, h) = −R+R2 h2
− −−−−−−

√ R = 6378.164 km h = 1.0 m
f(x) = (a +x −)p ap

f(x) → 0x
a

f(x) = (a +x −)p ap

= [ −1]ap (1 + )
x

a

p

= [ +O( )]ap px

a
( )

x

a

2

= O( )  as  → 0.
x

a

x

a
(11.8.16)

(a +x − = px +O( )  as  → 0.)p ap ap−1 ( )
x

a

2 x

a

f(R, h) = −R+R2 h2
− −−−−−−

√ R = 6378.164 km h = 1.0 m
a = , x = 1R2 p = 1

2

O( ) = O( ) ∼ 2.4 × .( )
x

a

2
( )

1

63781642

2

10−14

−6378164 ≈ px+163781642− −−−−−−−−−−
√ ap−1

px = (0.5)1 = 7.83926 × . ap−1 ( )63781642 −1/2
10−8
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11.9: Problems

Prove the following identities using only the definitions of the trigonometric functions, the Pythagorean identity, or the
identities for sines and cosines of sums of angles.

a. .
b. , for what values of  and  ?
c. .

Determine the exact values of

a. .
b. 
c. .

Denest the following if possible.

a. .
b. .
c. .
d. 
e. Find the roots of  in simplified form.

Determine the exact values of

a. .
b. 
c. .

Do the following.

a. Write  in terms of exponentials.
b. Prove  using the exponential forms of the hyperbolic functions.
c. Prove .
d. If  and , find  and .
e. Find the exact value of .

Prove that the inverse hyperbolic functions are the following logarithms:

a. .

b. .

Exercise 11.9.1

cos 2x = 2 x−1cos2

sin3x = A x+B sinxsin3 A B

sec θ+tanθ = tan( + )θ

2
π

4

Exercise 11.9.2

sin π

8

tan15∘

cos 105∘

Exercise 11.9.3

3 −2 2
–

√
− −−−−−−√

1 + 2
–

√
− −−−−−

√

5 +2 6
–

√
− −−−−−−

√

−+25
–

√
− −−−−−

√3 −25
–

√
− −−−−−

√3

+6x−4 = 0x2 5
–

√

Exercise 11.9.4

sin( )cos−1 3
5

tan( )sin−1 x

7

(sin )sin−1 3π
2

Exercise 11.9.5

(coshx−sinhx)6

cosh(x−y) = coshx coshy−sinhx sinhy
cosh2x = x+ xcosh2 sinh2

coshx = 13
12

x < 0 sinhx tanhx

sinh(arccosh3)

Exercise 11.9.6

x = ln(x+ )cosh−1 −1x2
− −−−−

√

x = lntanh−1 1
2

1+x

1−x
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Write the following in terms of logarithms:

a. .
b. .
c. .

Solve the following equations for .

a. .
b. .
c. .

Compute the following integrals.

a. .
b. .

c. . (Do this using integration by parts, the Tabular Method, and differentiation under the integral sign.)
d. .
e. .
f. 
g. 
h. , using the substitution .

i. , using a hyperbolic function substitution.

j. , using the substitution .

k. , using the substitutions  and .

l. .

Find the sum for each of the series:

a. .

b. .
c. .
d. .

e. .

f. .

g. What is  ?

A superball is dropped from a  height. After it rebounds, it reaches a new height of . Assuming a constant
coefficient of restitution, find the (ideal) total distance the ball will travel as it keeps bouncing.

Exercise 11.9.7

cosh−1 4
3

tanh−1 1
2

2sinh−1

Exercise 11.9.8

x

cosh(x+ln3) = 3

2 = ln2tanh−1 x−2
x−1

x−7 coshx+13 = 0sinh2

Exercise 11.9.9

∫ x dxe2x2

dx∫ 3
0

5x

+16x2√

∫ sin3xdxx3

∫ 3xdxcos4

xdx∫ π/4
0

sec3

∫ sinhxdxex

∫ dx9 −x2
− −−−−

√

∫ dx

(4− )x2 2
x = 2 tanhu

∫
4

0
dx

9+x2√

∫ dx

1−x2
x = tanhu

∫ dx

( +4)x2 3/2 x = 2 tanθ x = 2 sinhu

∫ dx

3 −6x+4x2√

Exercise 11.9.10

5 + + + +⋯25
7

125
49

625
343

∑∞
n=0

(−1 3)n

4n

∑∞
n=2

2
5n

(−1∑∞
n=−1 )n+1( )e

π

n

( + )∑∞
n=0

5
2n

1
3n

∑∞
n=1

3
n(n+3)

0.569¯̄̄

Exercise 11.9.11

2.00 m 1.65 m
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Here are some telescoping series problems.

a. Verify that 

 

b. Find the th partial sum of the series  and use it to determine the sum of the resulting telescoping

series.
c. Sum the series  by first writing the  th partial sum and then computing .

Determine the radius and interval of convergence of the following infinite series:

a. .
b. .
c. .
d. .

Find the Taylor series centered at  and its corresponding radius of convergence for the given function. In most cases, you
need not employ the direct method of computation of the Taylor coefficients.

a. .
b. .
c. .
d. .
e. .

f. .
g. .

Consider Gregory’s expansion

a. Derive Gregory’s expansion by using the definition 

 expanding the integrand in a Maclaurin series, and integrating the resulting series term by term. 
b. From this result, derive Gregory’s series for  by inserting an appropriate value for  in the series expansion for .

In the event that a series converges uniformly, one can consider the derivative of the series to arrive at the summation of other
infinite series.

Exercise 11.9.12

= ( − ) .∑
n=1

∞ 1

(n+2)(n+1)
∑
n=1

∞ n+1

n+2

n

n+1

n ( − )∑∞
n=1

n+1
n+2

n

n+1

[ n− (n+1)]∑∞
n=1 tan−1 tan−1 N limN→∞ sN

Exercise 11.9.13

(−1∑∞
n=1 )n

(x−1)n

n

∑∞
n=1

xn

n!2n

∑∞
n=1

1
n
( )x

5

n

(−1∑∞
n=1 )n xn

n√

Exercise 11.9.14

x = a

f(x) = sinhx, a = 0
f(x) = , a = 01 +x

− −−−−
√

f(x) = ln , a = 0
1+x

1−x

f(x) = x , a = 1ex

f(x) = , a = 11
x√

f(x) = +x−2, a = 2x4

f(x) = , a = 1x−1
2+x

Exercise 11.9.15

x = x− + −⋯ = .tan−1 x3

3

x5

5
∑
k=0

∞ (−1)k

2k+1
x2k+1

x = ,tan−1 ∫
x

0

dt

1 + t2

π x xtan−1

Exercise 11.9.16
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a. Differentiate the series representation for  to sum the series .
b. Use the result from part a to sum the series .
c. Sum the series .
d. Use the result from part c to sum the series .

e. Use the results from this problem to sum the series .

Evaluate the integral  by doing the following:

a. Compute the integral exactly.
b. Integrate the first three terms of the Maclaurin series expansion of the integrand and compare with the exact result.

Determine the next term in the time dilation example, 11.8.2. That is, find the  term and determine a better approximation to
the time difference of .

Evaluate the following expressions at the given point. Use your calculator or your computer (such as Maple). Then use series
expansions to find an approximation to the value of the expression to as many places as you trust.

a.  at .

b.  at .

c.  at .

d.  for  and .
e.  for .

11.9: Problems is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

f(x) = 1
1−x

n , |x| < 1∑∞
n=1 xn

∑∞
n=1

n

5n

n(n−1) , |x| < 1∑∞
n=2 xn

∑∞
n=2

−nn2

5n

∑∞
n=4

n2

5n

Exercise 11.9.17

xdx∫ π/6
0

sin2

Exercise 11.9.18

v4

c2

1 ns

Exercise 11.9.19

−cos1

1+x3√
x2 x = 0.015

ln −tanx1+x

1−x

− −−
√ x = 0.0015

f(x) = −1 +1

1+2x2√
x2 x = 5.00 ×10−3

f(R,h) = R− +R2 h2
− −−−−−−

√ R = 1.374 ×  km103 h = 1.00 m

f(x) = 1 − 1
1−x√

x = 2.5 ×10−13
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“The profound study of nature is the most fertile source of mathematical discoveries.”

- Joseph Fourier (1768-1830)
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12.4: Cauchy-Euler Equations
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12.1: First Order Differential Equations
Before moving on, we first define an -th order ordinary differential equation. It is an equation for an unknown function  that
expresses a relationship between the unknown function and its first  derivatives. One could write this generally as

Here  represents the th derivative of .

An initial value problem consists of the differential equation plus the values of the first  derivatives at a particular value of the
independent variable, say  :

A linear th order differential equation takes the form

If , then the equation is said to be homogeneous, otherwise it is called nonhomogeneous.

Typically, the first differential equations encountered are first order equations. A first order differential equation takes the form

There are two common first order differential equations for which one can formally obtain a solution. The first is the separable case
and the second is a first order equation. We indicate that we can formally obtain solutions, as one can display the needed integration
that leads to a solution. However, the resulting integrals are not always reducible to elementary functions nor does one obtain
explicit solutions when the integrals are doable.

Separable Equations
A first order equation is separable if it can be written the form

Special cases result when either  or . In the first case the equation is said to be autonomous.

The general solution to equation  is obtained in terms of two integrals:

where  is an integration constant. This yields a 1-parameter family of solutions to the differential equation corresponding to
different values of . If one can solve  for , then one obtains an explicit solution. Otherwise, one has a family of
implicit solutions. If an initial condition is given as well, then one might be able to find a member of the family that satisfies this
condition, which is often called a particular solution.

.

Solution
Applying , one has

Integrating yields

n y(x)

n

F ( (x), (x), … , (x), y(x), x) = 0.y(n) y(n−1) y′ (12.1.1)

(x)y(n) n y(x)

n−1

x0

( ) = , ( ) = , … , y ( ) = .y(n−1) x0 yn−1 y(n−2) x0 yn−2 x0 y0 (12.1.2)

n

(x) (x) + (x) (x) +… + (x) (x) + (x)y(x)) = f(x).an y(n) an−1 y(n−1) a1 y′ a0 (12.1.3)

f(x) ≡ 0

F ( , y, x) = 0.y′ (12.1.4)

= f(x)g(y). 
dy

dx
(12.1.5)

f(x) = 1 g(y) = 1

(12.1.5)

∫ = ∫ f(x)dx+C,
dy

g(y)
(12.1.6)

C

C (12.1.6) y(x)

 Example 12.1.1

= 2xy, y(0) = 2y′

(12.1.6)

∫ = ∫ 2xdx+C.
dy

y

ln |y| = +C.x2
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Exponentiating, one obtains the general solution,

Here we have defined . Since  is an arbitrary constant,  is an arbitrary constant. Several solutions in this 1-
parameter family are shown in Figure .

Figure : Plots of solutions from the parameter family of solutions of Example  for several initial conditions.

Next, one seeks a particular solution satisfying the initial condition. For  2 , one finds that . So, the particular
solution satisfying the initial condition is .

.

Solution
Following the same procedure as in the last example, one obtains:

Thus, we obtain an implicit solution. Writing the solution as , we see that this is a family of circles for  and
the origin for . Plots of some solutions in this family are shown in Figure .

y(x) = ± = A .e +Cx2

ex
2

A = ±eC C A

12.1.1

12.1.1 1− 12.1.1

y(0) = A = 2

y(x) = 2ex
2

 Example 12.1.2

y = −xy′

∫ ydy = −∫ xdx+C ⇒ = − +A,  where A = 2C.y2 x2

+ = Ax2 y2 A > 0

A = 0 12.1.2
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Figure : Plots of solutions of Example  for several initial conditions.

Linear First Order Equations
The second type of first order equation encountered is the linear first order differential equation in the standard form

In this case one seeks an integrating factor, , which is a function that one can multiply through the equation making the left
side a perfect derivative. Thus, obtaining,

The integrating factor that works is . One can derive  by expanding the derivative in Equation 
,

and comparing this equation to the one obtained from multiplying  by  :

Note that these last two equations would be the same if the second terms were the same. Thus, we will require that

This is a separable first order equation for  whose solution is the integrating factor:

Equation  is now easily integrated to obtain the general solution to the linear first order differential equation:

12.1.2 12.1.2

(x) +p(x)y(x) = q(x).y′ (12.1.7)

μ(x)

[μ(x)y(x)] = μ(x)q(x).
d

dx
(12.1.8)

μ(x) = exp( p(ξ)dξ)∫ x
μ(x)

(12.1.8)

μ(x) (x) + (x)y(x) = μ(x)q(x),y′ μ′ (12.1.9)

(12.1.7) μ(x)

μ(x) (x) +μ(x)p(x)y(x) = μ(x)q(x).y′ (12.1.10)

= μ(x)p(x).
dμ(x)

dx

μ(x)

μ(x) = exp( p(ξ)dξ).∫
x

(12.1.11)

(12.1.8)

y(x) = [ μ(ξ)q(ξ)dξ+C] .
1

μ(x)
∫

x

(12.1.12)
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.

Solution
One first notes that this is a linear first order differential equation. Solving for , one can see that the equation is not separable.
Furthermore, it is not in the standard form . So, we first rewrite the equation as

Noting that , we determine the integrating factor

Multiplying equation  by , we actually get back the original equation! In this case we have found that 
 must have been the derivative of something to start. In fact, . Therefore, the differential equation

becomes

Integrating, one obtains

or

Inserting the initial condition into this solution, we have . Therefore, . Thus, the solution of the initial
value problem is

We can verify that this is the solution. Since , we have

Also, .

.

Solution
Actually, this problem is easy if you realize that the left hand side is a perfect derivative. Namely,

But, we will go through the process of finding the integrating factor for practice.

First, we rewrite the original differential equation in standard form. We divide the equation by  to obtain

 Example 12.1.3

x +y = x, x > 0, y(1) = 0y′

y′

(12.1.7)

+ y = 1. 
dy

dx

1

x
(12.1.13)

p(x) = 1
x

μ(x) = exp[ ] = = x.∫
x dξ

ξ
eln x

(12.1.13) μ(x) = x

x +yy′ (xy = x +x)′ y′

(xy = x.)′

xy = +C
1

2
x2

y(x) = x+ .
1

2

C

x

0 = +C1
2

C = − 1
2

y(x) = (x− ) .
1

2

1

x

= +y′ 1
2

1

2x2

x +y = x+ + (x− ) = x. y′ 1

2

1

2x

1

2

1

x

y(1) = (1 −1) = 01
2

 Example 12.1.4

(sinx) +(cosx)y =y′ x2

((sinx)y) = (sinx) +(cosx)y.
d

dx
y′

sinx
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Then, we compute the integrating factor as

Using the integrating factor, the standard form equation becomes

Integrating, we have

So, the solution is

This page titled 12.1: First Order Differential Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated
by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available
upon request.

+(cotx)y = cscxy′ x2

μ(x) = exp( cot ξdξ) = = sinx.∫
x

eln(sin x)

((sinx)y) = .
d

dx
x2

y sinx = +C
1

3
x3

y(x) =( +C) cscx.
1

3
x3
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12.2: Second Order Linear Differential Equations
Second order differential equations are typically harder than first order. In most cases students are only exposed to second order
linear differential equations. A general form for a second order linear differential equation is given by

One can rewrite this equation using operator terminology. Namely, one first defines the differential operator 
, where . Then equation  becomes

The solutions of linear differential equations are found by making use of the linearity of . Namely, we consider the vector space
consisting of real-valued functions over some domain. Let  and  be vectors in this function space.  is a linear operator if for
two vectors  and  and scalar , we have

a. 
b. .

We assume that the reader has been introduced to concepts in linear algebra. Later in the text we will recall the definition of a
vector space and see that linear algebra is in the background of the study of many concepts in the solution of differential
equations.

One typically solves  by finding the general solution of the homogeneous problem,

and a particular solution of the nonhomogeneous problem,

Then, the general solution of  is simply given as . This is true because of the linearity of . Namely,

There are methods for finding a particular solution of a nonhomogeneous differential equation. These methods range from pure
guessing, the Method of Undetermined Coefficients, the Method of Variation of Parameters, or Green’s functions. We will review
these methods later in the chapter.

Determining solutions to the homogeneous problem, , is not always easy. However, many now famous mathematicians
and physicists have studied a variety of second order linear equations and they have saved us the trouble of finding solutions to the
differential equations that often appear in applications. We will encounter many of these in the following chapters. We will first
begin with some simple homogeneous linear differential equations.

Linearity is also useful in producing the general solution of a homogeneous linear differential equation. If  and  are solutions
of the homogeneous equation, then the linear combination  is also a solution of the homogeneous equation. In
fact, if  and  are linearly independent,  then  is the general solution of the homogeneous problem.

A set of functions  is a linearly independent set if and only if

implies , for .

a(x) (x) +b(x) (x) +c(x)y(x) = f(x).y′′ y′ (12.2.1)

L = a(x) +b(x)D+c(x)D2 D = d

dx
(12.2.1)

Ly = f . (12.2.2)

L 1

f g L

f g a

L(f +g) = Lf +Lg

L(af) = aLf

 Note

(12.2.1)

L = 0yh

L = f .yp

(12.2.1) y = +yh yp L

Ly = L ( + )yh yp

= L +Lyh yp

= 0 +f = f . (12.2.3)

L = 0yh

y1 y2

y = +c1y1 c2y2

y1 y2
2 y = +c1y1 c2y2

 Note

{ (x)}yi
n
i=1

(x) +… + (x) = 0c1y1 cnyn

= 0ci i = 1, … ,n
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For . If  and  are linearly dependent, then the coefficients are not zero and 
 and is a multiple of .

Linear independence can also be established by looking at the Wronskian of the solutions. For a second order differential equation
the Wronskian is defined as

The solutions are linearly independent if the Wronskian is not zero.

Constant Coefficient Equations

The simplest second order differential equations are those with constant coefficients. The general form for a homogeneous constant
coefficient second order linear differential equation is given as

where , and  are constants.

Solutions to  are obtained by making a guess of . Inserting this guess into  leads to the characteristic
equation

Namely, we compute the derivatives of , to get , and . Inserting into , we have

Since the exponential is never zero, we find that .

The characteristic equation for  is . Solutions of this quadratic equation lead to solutions
of the differential equation.

Two real, distinct roots,  and , give solutions of the form

The roots of this equation, , in turn lead to three types of solutions depending upon the nature of the roots. In general, we have
two linearly independent solutions,  and , and the general solution is given by a linear combination of
these solutions,

For two real distinct roots, we are done. However, when the roots are real, but equal, or complex conjugate roots, we need to do a
little more work to obtain usable solutions.

.

Solution
The characteristic equation for this problem is . The roots of this equation are found as . Therefore,
the general solution can be quickly written down:

Note that there are two arbitrary constants in the general solution. Therefore, one needs two pieces of information to find a
particular solution. Of course, we have the needed information in the form of the initial conditions.

n = 2, (x) + (x) = 0c1y1 c2y2 y1 y2

(x) = − (x)y2
c1

c2
y1 (x)y1

W ( , ) = (x) (x) − (x) (x).y1 y2 y1 y′
2 y′

1 y2 (12.2.4)

a (x) +b (x) +cy(x) = 0,y′′ y′ (12.2.5)

a, b c

(12.2.5) y(x) = erx (12.2.5)

a +br+c = 0. r2 (12.2.6)

y(x) = erx y(x) = rerx y(x) = r2erx (12.2.5)

0 = a (x) +b (x) +cy(x) = (a +br+c) .y′′ y′ r2 erx

a +br+c = 0r2

 Note

a +b +cy = 0y′′ y′ a +br+c = 0r2

r1 r2

y(x) = + .c1e
xr1 c2e

xr2

,r1 r2

(x) =y1 e xr1 (x) =y2 e xr2

y(x) = + .c1e
xr1 c2e

xr2

 Example 12.2.1

− −6y = 0y(0) = 2, (0) = 0y′′ y′ y′

−r−6 = 0r2 r = −2, 3

y(x) = + .c1e
−2x c2e

3x
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One also needs to evaluate the first derivative

in order to attempt to satisfy the initial conditions. Evaluating  and  at  yields

These two equations in two unknowns can readily be solved to give  and . Therefore, the solution of the
initial value problem is obtained as .

Repeated roots, , give solutions of the form

In the case when there is a repeated real root, one has only one solution, . The question is how does one obtain the
second linearly independent solution? Since the solutions should be independent, we must have that the ratio  is not a
constant. So, we guess the form . (This process is called the Method of Reduction of Order.)

For constant coefficient second order equations, we can write the equation as

where . We now insert  into this equation. First we compute

Then,

So, if  is to be a solution to the differential equation, then  for all . So, , which implies that

So,

Without loss of generality, we can take  and  to obtain the second linearly independent solution, . The
general solution is then

.

Solution
In this example we have . There is only one root, . From the above discussion, we easily find the
solution .

When one has complex roots in the solution of constant coefficient equations, one needs to look at the solutions

We make use of Euler’s formula (See Chapter 6 for more on complex variables)

(x) = −2 +3y′ c1e
−2x c2e

3x

y y′ x = 0

2 = +c1 c2

0 = −2 +3c1 c2 (12.2.7)

= 6/5c1 = 4/5c2

y(x) = +6
5
e−2x 4

5
e3x

 Note

= = rr1 r2

y(x) = ( + x) .c1 c2 erx

(x) =y1 erx

(x)/ (x)y2 y1

(x) = v(x) (x) = v(x)y2 y1 erx

(D−r y = 0, )2

D = d

dx
(x) = v(x)y2 erx

(D−r)v = .erx v′erx

0 = (D−r v = (D−r) = .)2 erx v′erx v′′erx

(x)y2 (x) = 0v′′ erx x (x) = 0v′′

v(x) = ax+b.

(x) = (ax+b) .y2 erx

b = 0 a = 1 (x) = xy2 erx

y(x) = + x .c1e
rx c2 erx

 Example 12.2.2

+6 +9y = 0y′′ y′

+6r+9 = 0r2 r = −3
y(x) = ( + x)c1 c2 e−3x

(x) = .y1,2 e(α±iβ)x
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Then, the linear combination of  and  becomes

Thus, we see that we have a linear combination of two real, linearly independent solutions,  and .

Complex roots, , give solutions of the form

.

Solution
The characteristic equation in this case is . The roots are pure imaginary roots, , and the general solution
consists purely of sinusoidal functions, , since  and .

.

Solution
The characteristic equation in this case is . The roots are complex,  and the general solution
can be written as

.

Solution
This is an example of a nonhomogeneous problem. The homogeneous problem was actually solved in Example .
According to the theory, we need only seek a particular solution to the nonhomogeneous problem and add it to the solution of
the last example to get the general solution.

The particular solution can be obtained by purely guessing, making an educated guess, or using the Method of Variation of
Parameters. We will not review all of these techniques at this time. Due to the simple form of the driving term, we will make an
intelligent guess of  and determine what  needs to be. Inserting this guess into the differential equation gives 

. So, we see that  works. The general solution of the nonhomogeneous problem is therefore 
.

The three cases for constant coefficient linear second order differential equations are summarized below.

= cosβx+ i sinβxeiβx (12.2.8)

(x)y1 (x)y2

A +Be(α+iβ)x e(α−iβ)x = [A +B ]eαx eiβx e−iβx

= [(A+B) cosβx+ i(A−B) sinβx]eαx

≡ ( cosβx+ sinβx)eαx c1 c2 (12.2.9)

cosβxeαx sinβxeαx

 Note

r = α± iβ

y(x) = ( cosβx+ sinβx) .eαx c1 c2

 Example 12.2.3

+4y = 0y′′

+4 = 0r2 r = ±2i
y(x) = cos(2x) + sin(2x)c1 c2 α = 0 β = 2

 Example 12.2.4

+2 +4y = 0y′′ y′

+2r+4 = 0r2 r = −1 ± i3
–

√

y(x) = [ cos( x) + sin( x)] .c1 3–√ c2 3–√ e−x

 Example 12.2.5

+4y = sinxy′′

12.2.3

(x) = A sinxyp A

(−A+4A) sinx = sinx A = 1/3

y(x) = cos(2x) + sin(2x) + sinxc1 c2
1
3
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1. Real, distinct roots . In this case the solutions corresponding to each root are linearly independent. Therefore, the
general solution is simply .

2. Real, equal roots . In this case the solutions corresponding to each root are linearly dependent. To find a
second linearly independent solution, one uses the Method of Reduction of Order. This gives the second solution as .
Therefore, the general solution is found as .

3. Complex conjugate roots . In this case the solutions corresponding to each root are linearly independent.
Making use of Euler’s identity, , these complex exponentials can be rewritten in terms of
trigonometric functions. Namely, one has that  and  are two linearly independent solutions.
Therefore, the general solution becomes .

This page titled 12.2: Second Order Linear Differential Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or
curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is
available upon request.

 Classification of Roots of the Characteristic Equation for Second Order Constant Coefficient ODEs

,r1 r2

y(x) = +c1e
xr1 c2e

xr2

= = rr1 r2

xerx

y(x) = ( + x)c1 c2 erx

, = α± iβr1 r2

= cos(θ) + i sin(θ)eiθ

cos(βx)eαx sin(βx)eαx

y(x) = ( cos(βx) + sin(βx))eαx c1 c2
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12.3: Forced Systems
Many problems can be modeled by nonhomogeneous second order equations. Thus, we want to find solutions of equations of the
form

As noted in Section 12.2, one solves this equation by finding the general solution of the homogeneous problem,

and a particular solution of the nonhomogeneous problem,

Then, the general solution of (12.2.1) is simply given as 

So far, we only know how to solve constant coefficient, homogeneous equations. So, by adding a nonhomogeneous term to such
equations we will need to find the particular solution to the nonhomogeneous equation.

We could guess a solution, but that is not usually possible without a little bit of experience. So, we need some other methods. There
are two main methods. In the first case, the Method of Undetermined Coefficients, one makes an intelligent guess based on the
form of . In the second method, one can systematically developed the particular solution. We will come back to the Method of
Variation of Parameters and we will also introduce the powerful machinery of Green’s functions later in this section.

Method of Undetermined Coefficients
Let's solve a simple differential equation highlighting how we can handle nonhomogeneous equations.

Consider the equation

Solution
The first step is to determine the solution of the homogeneous equation. Thus, we solve

The characteristic equation is . The roots are . So, we can immediately write the solution

The second step is to find a particular solution of . What possible function can we insert into this equation such that
only a 4 remains? If we try something proportional to , then we are left with a linear function after inserting  and its
derivatives. Perhaps a constant function you might think.  does not work. But, we could try an arbitrary constant, .

Let’s see. Inserting  into , we obtain

Ah ha! We see that we can choose  and this works. So, we have a particular solution, . This step is done.

Combining the two solutions, we have the general solution to the original nonhomogeneous equation . Namely,

Insert this solution into the equation and verify that it is indeed a solution. If we had been given initial conditions, we could
now use them to determine the arbitrary constants.

 Ly (x) = a(x) (x)+b(x) (x)+c(x)y(x) = f(x).y′′ y′ (12.3.1)

L = 0yh

L = f .yp

y = +yh yp

f(x)

 Example 12.3.1

+2 −3y = 4. y′′ y′ (12.3.2)

+2 −3 = 0.y′′
h

y′
h

yh (12.3.3)

+2r−3 = 0r2 r= 1,−3

(x) = + .yh c1e
x c2e

−3x

(12.3.2)

x x

y = 4 y =A

y =A (12.3.2)

−3A= 4. 

A=− 4
3

(x) =−yp
4
3

(12.3.2)

y(x) = (x)+ (x) = + − .yh yp c1e
x c2e

−3x 4

3
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What if we had a different source term? Consider the equation

The only thing that would change is the particular solution. So, we need a guess.

Solution
We know a constant function does not work by the last example. So, let’s try . Inserting this function into Equation 

, we obtain

Picking  would get rid of the  terms, but will not cancel everything. We still have a constant left. So, we need
something more general.

Let’s try a linear function, . Then we get after substitution into 

Equating the coefficients of the different powers of  on both sides, we find a system of equations for the undetermined
coefficients:

These are easily solved to obtain

So, the particular solution is

This gives the general solution to the nonhomogeneous problem as

There are general forms that you can guess based upon the form of the driving term, . Some examples are given in Table 
. More general applications are covered in a standard text on differential equations. However, the procedure is simple. Given 

 in a particular form, you make an appropriate guess up to some unknown parameters, or coefficients. Inserting the guess leads
to a system of equations for the unknown coefficients. Solve the system and you have the solution. This solution is then added to
the general solution of the homogeneous differential equation.

Table : Forms used in the Method of Undetermined Coefficients.
Guess

 Example 12.3.2

+2 −3y = 4x.y′′ y′ (12.3.4)

=Axyp
(12.3.4)

2A−3Ax = 4x. 

A=−4/3 x

(x) =Ax+Byp (12.3.4)

2A−3(Ax+B) = 4x. 

x

2A−3B

−3A

= 0

= 4. (12.3.5)

A

B

=−
4

3

= A=− .
2

3

8

9
(12.3.6)

(x) =− x−yp
4

3

8

9

y(x) = (x)+ (x) = + − x− .yh yp c1e
x c2e

−3x 4

3

8

9

f(x)

12.3.1

f(x)

12.3.1

f(x)

+ +⋯+ x+anx
n an−1x

n−1 a1 a0 + +⋯+ x+Anx
n An−1x

n−1 A1 A0

aebx Aebx

acosωx+ bsinωx Acosωx+B sinωx
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Solve

Solution
According to the above, we would guess a solution of the form . Inserting our guess, we find

Oops! The coefficient, , disappeared! We cannot solve for it. What went wrong?

The answer lies in the general solution of the homogeneous problem. Note that  and  are solutions to the homogeneous
problem. So, a multiple of  will not get us anywhere. It turns out that there is one further modification of the method. If
the driving term contains terms that are solutions of the homogeneous problem, then we need to make a guess consisting of the
smallest possible power of  times the function which is no longer a solution of the homogeneous problem. Namely, we guess 

 and differentiate this guess to obtain the derivatives  and .

Inserting these derivatives into the differential equation, we obtain

Comparing coefficients, we have

So,  and . Thus, the solution to the problem is

In general, if any term in the guess  is a solution of the homogeneous equation, then multiply the guess by , where  is
the smallest positive integer such that no term in  is a solution of the homogeneous problem.

Periodically Forced Oscillations
A special type of forcing is periodic forcing. Realistic oscillations will dampen and eventually stop if left unattended. For example,
mechanical clocks are driven by compound or torsional pendula and electric oscillators are often designed with the need to
continue for long periods of time. However, they are not perpetual motion machines and will need a periodic injection of energy.
This can be done systematically by adding periodic forcing. Another simple example is the motion of a child on a swing in the
park. This simple damped pendulum system will naturally slow down to equilibrium (stopped) if left alone. However, if the child
pumps energy into the swing at the right time, or if an adult pushes the child at the right time, then the amplitude of the swing can
be increased.

There are other systems, such as airplane wings and long bridge spans, in which external driving forces might cause damage to the
system. A well know example is the wind induced collapse of the Tacoma Narrows Bridge due to strong winds. Of course, if one is
not careful, the child in the last example might get too much energy pumped into the system causing a similar failure of the desired
motion.

The Tacoma Narrows Bridge opened in Washington State (U.S.) in mid  However, in November of the same year the
winds excited a transverse mode of vibration, which eventually (in a few hours) lead to large amplitude oscillations and then
collapse.

 Example 12.3.3

+2 −3y = 2 . y′′ y′ e−3x (12.3.7)

=Ayp e−3x

0 = 2 . e−3x

A

ex e−3x

e−3x

x

(x) =Axyp e−3x =A(1−3x)y′p e−3x =A(9x−6)y′′p e−3x

[(9x−6)+2(1−3x)−3x]A = 2 .e−3x e−3x

−4A= 2. 

A=−1/2 (x) =− xyp
1
2

e−3x

y(x) =(2− x) .
1

2
e−3x

 Modified Method of Undetermined Coefficients

(x)yp xk k

(x)xkyp

 Note

1940.

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90996?pdf


12.3.4 https://math.libretexts.org/@go/page/90996

While there are many types of forced systems, and some fairly complicated, we can easily get to the basic characteristics of forced
oscillations by modifying the mass-spring system by adding an external, time-dependent, driving force. Such as system satisfies the
equation

where  is the mass,  is the damping constant,  is the spring constant, and  is the driving force. If  is of simple form,
then we can employ the Method of Undetermined Coefficients. Since the systems we have considered so far are similar, one could
easily apply the following to pendula or circuits.

As the damping term only complicates the solution, we will consider the simpler case of undamped motion and assume that .
Furthermore, we will introduce a sinusoidal driving force,  in order to study periodic forcing. This leads to the
simple periodically driven mass on a spring system

Figure : An external driving force is added to the spring-mass-damper system.

In order to find the general solution, we first obtain the solution to the homogeneous problem,

where . Next, we seek a particular solution to the nonhomogeneous problem. We will apply the Method of

Undetermined Coefficients.

A natural guess for the particular solution would be to use  . However, recall that the guess should not be
a solution of the homogeneous problem. Comparing  with , this would hold if . Otherwise, one would need to use the
Modified Method of Undetermined Coefficients as described in the last section. So, we have two cases to consider.

Dividing through by the mass, we solve the simple driven system,

Solve , for .

Solution
In this case we continue with the guess  sinct. Since there is no damping term, one quickly finds that 

. Inserting  into the differential equation, we find that

Solving for , we obtain

m +b(x)+kx = F (t),ẍ (12.3.8)

m b k F (t) F (t)

b = 0

F (t) = cosωtF0

m +kx = cosωt.ẍ F0 (12.3.9)

12.3.1

= cos t+ sin txh c1 ω0 c2 ω0

=ω0
k
m

−−
√

=A cosωt+xp B sinωt

xp xh ω≠ ω0

 Note

+ x = cosωt.ẍ ω2
0

F0

m

 Example 12.3.4

+ x = cosωtẍ ω2
0

F0

m
ω≠ ω0

=A cosωt+Bxp
B= 0 =A cosωtxp

(− + )A cosωt = cosωt.ω2 ω2
0

F0

m

A

A= . 
F0

m ( − )ω2
0 ω2
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The general solution for this case is thus,

Solve .

Solution
In this case, we need to employ the Modified Method of Undetermined Coefficients. So, we make the guess 

. Since there is no damping term, one finds that . Inserting the guess in to the differential
equation, we find that

or the general solution is

The general solution to the problem is thus

Special cases of these solutions provide interesting physics, which can be explored by the reader in the homework. In the case that 
, we see that the solution tends to grow as  gets large. This is what is called a resonance. Essentially, one is driving the

system at its natural frequency. As the system is moving to the left, one pushes it to the left. If it is moving to the right, one is
adding energy in that direction. This forces the amplitude of oscillation to continue to grow until the system breaks. An example of
such an oscillation is shown in Figure .

x(t) = cos t+ sin t+ cosωt.c1 ω0 c2 ω0
F0

m ( − )ω2
0 ω2

(12.3.10)

 Example 12.3.5

+ x = cos tẍ ω2
0

F0

m ω0

= t(A cos t+B sin t)xp ω0 ω0 A= 0

B= ,
F0

2mω0

x(t) = cos t+ sin t+ t sinωt.c1 ω0 c2 ω0
F0

2mω
(12.3.11)

x(t) = cos t+ sin t+ ω= ,c1 ω0 c2 ω0

⎧

⎩
⎨
⎪

⎪

cosωt
F0

m( − )ω2
0 ω2

t sin t
F0

2mω0
ω0

ω0 (12.3.12)

ω= ω0 t

12.3.2
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Figure : Plot of 

In the case that , one can rewrite the solution in a simple form. Let's choose the initial conditions that 
. Then one has (see Problem ??)

For values of  near , one finds the solution consists of a rapid oscillation, due to the  factor, with a slowly varying

amplitude, . The reader can investigate this solution.

This slow variation is called a beat and the beat frequency is given by  . In Figure  we see the high frequency
oscillations are contained by the lower beat frequency, . This corresponds to a period of , which
looks about right from the figure.

12.3.2 x(t) = 5 cos 2t+ t sin 2t,1
2

ω≠ ω0

=− / (m ( − )) , = 0c1 F0 ω2
0 ω2 c2

x(t) = sin sin .
2F0

m ( − )ω2
0

ω2

( −ω) tω0

2

( +ω) tω0

2
(12.3.13)

ω ω0 sin
( +ω)tω0

2

sin
2F0

m( − )ω2
0 ω2

( −ω)tω0

2

f =
| −ω|ω0

4π
12.3.3

f = s0.15
4π

T = 1/f ≈ 83.7 Hz

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90996?pdf


12.3.7 https://math.libretexts.org/@go/page/90996

Figure : Plot of , a solution of .

Solve , for .

Solution
For each case, we need the solution of the homogeneous problem,

The particular solution depends on the value of .

For , the driving term, , is a solution of the homogeneous problem. Thus, we assume

Inserting this into the differential equation, we find  and . So, the general solution is

Imposing the initial conditions, we find

This solution is shown in Figure .

12.3.3 x(t) = (2045 cos 2t−800 cos t)1
249

43
20 +4x = 2 cos 2.15tẍ

 Example 12.3.6

+x = 2 cosωt, x(0) = 0, (0) = 0ẍ ẋ ω= 1, 1.15

(t) = cos t+ sin t.xh c1 c2

ω

ω= 1 2 cosωt

(t) =At cos t+Bt sin t.xp

A= 0 B= 1

x(t) = cos t+ sin t+ t sin t.c1 c2

x(t) = t sin t.

12.3.4
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Figure : Plot of  a solution of .

For , the driving term, , is not a solution of the homogeneous problem. Thus, we assume

Inserting this into the differential equation, we find  and . So, the general solution is

Imposing the initial conditions, we find

This solution is shown in Figure . The beat frequency in this case is the same as with Figure .

12.3.4 x(t) = t sin 2t, +x = 2 cos tẍ

ω= 1.15 2 cosω1.15t

(t) =A cos1.15t+B sin1.15t.xp

A=− 800
129

B= 0

x(t) = cos t+ sin t− cos t.c1 c2
800

129

x(t) = (cos t−cos1.15t).
800

129

12.3.5 12.3.3
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Figure : Plot of  a solution of .

Method of Variation of Parameters
A more systematic way to find particular solutions is through the use of the Method of Variation of Parameters. The derivation is a
little detailed and the solution is sometimes messy, but the application of the method is straight forward if you can do the required
integrals. We will first derive the needed equations and then do some examples.

We begin with the nonhomogeneous equation. Let’s assume it is of the standard form

We know that the solution of the homogeneous equation can be written in terms of two linearly independent solutions, which we
will call  and  :

Replacing the constants with functions, then we no longer have a solution to the homogeneous equation. Is it possible that we could
stumble across the right functions with which to replace the constants and somehow end up with  when inserted into the left
side of the differential equation? It turns out that we can.

So, let’s assume that the constants are replaced with two unknown functions, which we will call  and . This change of
the parameters is where the name of the method derives. Thus, we are assuming that a particular solution takes the form

If this is to be a solution, then insertion into the differential equation should make the equation hold. To do this we will first need to
compute some derivatives.

We assume the nonhomogeneous equation has a particular solution of the form

The first derivative is given by

12.3.5 x(t) = (cos t−cos t) ,800
129

23
20

+x = 2 cos 1.15tẍ

a(x) (x)+b(x) (x)+c(x)y(x) = f(x).y′′ y′ (12.3.14)

(x)y1 (x)y2

(x) = (x)+ (x).yh c1y1 c2y2

f(x)

(x)c1 (x)c2

(x) = (x) (x)+ (x) (x).yp c1 y1 c2 y2 (12.3.15)

 Note

(x) = (x) (x)+ (x) (x).yp c1 y1 c2 y2

https://libretexts.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://math.libretexts.org/@go/page/90996?pdf


12.3.10 https://math.libretexts.org/@go/page/90996

Next we will need the second derivative. But, this will yield eight terms. So, we will first make a simplifying assumption. Let’s
assume that the last two terms add to zero:

It turns out that we will get the same results in the end if we did not assume this. The important thing is that it works!

Under the assumption the first derivative simplifies to

The second derivative now only has four terms:

Now that we have the derivatives, we can insert the guess into the differential equation. Thus, we have

Regrouping the terms, we obtain

Note that the first two rows vanish since  and  are solutions of the homogeneous problem. This leaves the equation

which can be rearranged as

In order to solve the differential equation , we assume

for  Then, one need only solve a simple system of equations .

In summary, we have assumed a particular solution of the form

This is only possible if the unknown functions  and  satisfy the system of equations \[\begin{align} &c_{1}^{\prime}
(x) y_{1}(x)+c_{2}^{\prime}(x) y_{2}(x)=0\nonumber \\ &c_{1}^{\prime}(x) y_{1}^{\prime}(x)+c_{2}^{\prime}(x)
y_{2}^{\prime}(x)=\frac{f(x)}{a(x)}\label{eq:23} \end{align}\]

It is standard to solve this system for the derivatives of the unknown functions and then present the integrated forms. However, one
could just as easily start from this system and solve the system for each problem encountered.

Find the general solution of the nonhomogeneous problem:  .

Solution

(x) = (x) (x)+ (x) (x)+ (x) (x)+ (x) (x).y′p c1 y′1 c2 y′2 c′1 y1 c′2 y2 (12.3.16)

(x) (x)+ (x) (x) = 0.c′1 y1 c′2 y2 (12.3.17)

(x) = (x) (x)+ (x) (x).y′p c1 y′1 c2 y′2 (12.3.18)

(x) = (x) (x)+ (x) (x)+ (x) (x)+ (x) (x).y′p c1 y′′
1

c2 y′′
2

c′
1

y′
1

c′
2

y′
2

(12.3.19)

f(x) = a(x) [ (x) (x)+ (x) (x)+ (x) (x)+ (x) (x)]c1 y′′1 c2 y′′2 c′1 y′1 c′2 y′2
+b(x) [ (x) (x)+ (x) (x)]c1 y′1 c2 y′2
+c(x) [ (x) (x)+ (x) (x)] .c1 y1 c2 y2 (12.3.20)

f(x) = (x) [a(x) (x)+b(x) (x)+c(x) (x)]c1 y′′1 y′1 y1

+ (x) [a(x) (x)+b(x) (x)+c(x) (x)]c2 y′′2 y′2 y2

+a(x) [ (x) (x)+ (x) (x)] .c′1 y′1 c′2 y′2 (12.3.21)

y1 y2

f(x) = a(x) [ (x) (x)+ (x) (x)] ,c′1 y′1 c′2 y′2

(x) (x)+ (x) (x) = .c′1 y′1 c′2 y′2
f(x)

a(x)
(12.3.22)

 Note

Ly = f

(x) = (x) (x)+ (x) (x),yp c1 y1 c2 y2

L = 0.y1,2 (???)

(x) = (x) (x)+ (x) (x).yp c1 y1 c2 y2

(x)c1 (x)c2

 Example 12.3.7

−y′′ y = e2x
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The general solution to the homogeneous problem  is

In order to use the Method of Variation of Parameters, we seek a solution of the form

We find the unknown functions by solving the system in , which in this case becomes

Adding these equations we find that

Solving for  we find

Subtracting the equations in the system yields

Thus,

The particular solution is found by inserting these results into  :

Thus, we have the general solution of the nonhomogeneous problem as

Now consider the problem: .

Solution
The solution to the homogeneous problem is

We now seek a particular solution of the form

We let  and  in system :

− = 0y′′h yh

(x) = + .yh c1e
x c2e

−x

(x) = (x) + (x) .yp c1 ex c2 e−x

(???)

(x) + (x) = 0c′1 ex c′2 e−x

(x) − (x) = .c′
1

ex c′
2

e−x e2x (12.3.23)

2 = → =c′
1
ex e2x c′

1

1

2
ex

(x)c1

(x) = ∫ dx = .c1
1

2
ex

1

2
ex

2 =− → =−c′2e
−x e2x c′2

1

2
e3x

(x) =− ∫ dx =− .c2
1

2
e3x

1

6
e3x

yp

(x)yp = (x) (x)+ (x) (x)c1 y1 c2 y2

=( ) +(− )
1

2
ex ex

1

6
e3x e−x

=
1

3
e2x (12.3.24)

y(x) = + + .c1e
x c2e

−x 1

3
e2x

 Example 12.3.8

+4y = sinxy′′

(x) = cos2x+ sin2x. yh c1 c2 (12.3.25)

(x) = (x) cos2x+ (x) sin2x.yh c1 c2

(x) = cos2xy1 (x) = sin2x, a(x) = 1, f(x) = sinxy2 (???)

(x) cos2x+ (x) sin2xc′1 c′2
−2 (x) sin2x+2 (x) cos2xc′

1
c′
2

= 0

= sinx. (12.3.26)
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Now, use your favorite method for solving a system of two equations and two unknowns. In this case, we can multiply the first
equation by  and the second equation by . Adding the resulting equations will eliminate the  terms. Thus, we
have

Inserting this into the first equation of the system, we have

These can easily be solved:

The final step in getting the particular solution is to insert these functions into . This gives

So, the general solution is

This page titled 12.3: Forced Systems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman
via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

2 sin2x cos2x c′1

(x) = sinx cos2x = (2 x−1) sinx.c′2
1

2

1

2
cos2

(x) =− (x) =− sinx sin2x =− x cosx. c′1 c′2
sin2x

cos2x

1

2
sin2

(x) = ∫ (2 x−1) sinxdx = (cosx− x) .c2
1

2
cos2

1

2

2

3
cos3

(x) =−∫ cosxdx =− x.c1 sinx
1

3
sin3

(x)yp

(x)yp = (x) (x)+ (x) (x)c1 y1 c2 y2

=(− x) cos2x+( cosx− x) sinx
1

3
sin3 1

2

1

3
cos3

= sinx.
1

3
(12.3.27)

y(x) = cos2x+ sin2x+ sinx.c1 c2
1

3
(12.3.28)
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12.4: Cauchy-Euler Equations
Another class of solvable linear differential equations that is of interest are the Cauchy-Euler type of equations, also referred to in
some books as Euler’s equation. These are given by

Note that in such equations the power of  in each of the coefficients matches the order of the derivative in that term. These
equations are solved in a manner similar to the constant coefficient equations.

One begins by making the guess . Inserting this function and its derivatives,

into Equation , we have

Since this has to be true for all  in the problem domain, we obtain the characteristic equation

The solutions of Cauchy-Euler equations can be found using the characteristic equation .

Just like the constant coefficient differential equation, we have a quadratic equation and the nature of the roots again leads to three
classes of solutions. If there are two real, distinct roots, then the general solution takes the form 

For two real, distinct roots, the general solution takes the form

Find the general solution: .

Solution
As with the constant coefficient equations, we begin by writing down the characteristic equation. Doing a simple computation,

one determines the roots are . Therefore, the general solution is 

Deriving the solution for Case 2 for the Cauchy-Euler equations works in the same way as the second for constant coefficient
equations, but it is a bit messier. First note that for the real root, , the characteristic equation has to factor as .
Expanding, we have

The general characteristic equation is

a (x) +bx (x) +cy(x) = 0.x2y′′ y′ (12.4.1)

x

y(x) = xr

(x) = r , (x) = r(r−1) ,y′ xr−1 y′′ xr−2

(12.4.1)

[ar(r−1) +br+c] = 0.xr

x

ar(r−1) +br+c = 0. (12.4.2)

 Note

ar(r−1) +br+c = 0

y(x) = + .c1x
r1 c2x

r2

 Note

y(x) = + .c1x
r1 c2x

r2

 Example 12.4.1

+5x +12y = 0x2y′′ y′

0

−8

= r(r−1) +5r+12

= +4r+12r2

= (r+2 +8,)2

= (r+2 ,)2 (12.4.3)

r = −2 ±2 2
–

√

y(x) = [ cos(2 ln |x|) + sin(2 ln |x|)]c1 2
–

√ c2 2
–

√ x−2

r = r1 = 0(r− )r1
2

−2 r+ = 0. r2 r1 r2
1
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Dividing this equation by  and rewriting, we have

Comparing equations, we find

So, the Cauchy-Euler equation for this case can be written in the form

Now we seek the second linearly independent solution in the form  . We first list this function and its derivatives,

Inserting these forms into the differential equation, we have

Thus, we need to solve the equation

or

Integrating, we have

where  absorbs  and the signs from the absolute values. Exponentiating, we obtain one last differential equation to
solve,

Thus,

So, we have found that the second linearly independent equation can be written as

Therefore, the general solution is found as .

For one root, , the general solution is of the form

ar(r−1) +br+c = 0.

a

+( −1) r+ = 0. r2 b

a

c

a

= 1 −2 , = .
b

a
r1

c

a
r2

1

+(1 −2 )x + y = 0.x2y′′ r1 y′ r2
1

(x) =y2 v(x)xr1

(x) = v ,y2 xr1

(x) = (x + v) ,y′
2 v′ r1 x −1r1

(x) = ( +2 x + ( −1)v) .y′′
2 x2v′′ r1 v′ r1 r1 x −2r1 (12.4.4)

0 = +(1 −2 )x + yx2y′′ r1 y′ r2
1

= (x + ) .v′′ v′ x +1r1 (12.4.5)

x + = 0,v′′ v′

= −
v′′

v′

1

x

ln| | = −ln |x| +C, v′

A = ±eC C

= . v′ A

x

v(x) = A ln |x| +k.

(x) = ln |x|.y2 xr1

y(x) = ( + ln |x|)c1 c2 xr

 Note

= = rr1 r2

y(x) = ( + ln |x|) .c1 c2 xr
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Solve the initial value problem: , with the initial conditions .

Solution
For this example the characteristic equation takes the form

or

There is only one real root, . Therefore, the general solution is

However, this problem is an initial value problem. At  we know the values of  and . Using the general solution, we
first have that

Thus, we have so far that . Now, using the second condition and

we have

Therefore, the solution of the initial value problem is .

We now turn to the case of complex conjugate roots, . When dealing with the Cauchy-Euler equations, we have
solutions of the form . The key to obtaining real solutions is to first rewrite  :

Thus, a power can be written as an exponential and the solution can be written as

Recalling that

we can now find two real, linearly independent solutions,  and  following the same steps as earlier
for the constant coefficient case. This gives the general solution as

For complex conjugate roots, , the general solution takes the form .

Solve: .

Solution

 Example 12.4.2

+3t +y = 0t2y′′ y′ y(1) = 0, (1) = 1y′

r(r−1) +3r+1 = 0,

+2r+1 = 0.r2

r = −1

y(t) = ( + ln |t|) .c1 c2 t−1

t = 1 y y′

0 = y(1) = .c1

y(t) = ln |t|c2 t−1

(t) = (1 −ln |t|) ,y′ c2 t−2

1 = y(1) = .c2

y(t) = ln |t|t−1

r = α± iβ

y(x) = xα+iβ xy

= = .xy eln xy ey ln x

y(x) = = , x > 0.xα+iβ xαeiβ ln x

= cos(β ln |x|) + i sin(β ln |x|),eiβ ln x

cos(β ln |x|)xα sin(β ln |x|)xα

y(x) = ( cos(β ln |x|) + sin(β ln |x|)) .xα c1 c2

 Note

r = α± iβ y(x) = ( cos(β ln |x|) + sin(β ln |x|))xα c1 c2

 Example 12.4.3

−x +5y = 0x2y′′ y′
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The characteristic equation takes the form

or

The roots of this equation are complex, . Therefore, the general solution is 
.

The three cases are summarized in the table below.

Table 
Classification of Roots of the Characteristic Equation for Cauchy-Euler Differential Equations

1. Real, distinct roots . In this case the solutions corresponding to each root are linearly independent. Therefore, the general solution is simply 
.

2. Real, equal roots . In this case the solutions corresponding to each root are linearly dependent. To find a second linearly independent
solution, one uses the Method of Reduction of Order. This gives the second solution as . Therefore, the general solution is found as 

.

3. Complex conjugate roots . In this case the solutions corresponding to each root are linearly independent. These complex
exponentials can be rewritten in terms of trigonometric functions. Namely, one has that  and  are two  early
independent solutions. Therefore, the general solution becomes .

Nonhomogeneous Cauchy-Euler Equations

We can also solve some nonhomogeneous Cauchy-Euler equations using the Method of Undetermined Coefficients or the Method
of Variation of Parameters. We will demonstrate this with a couple of examples.

Find the solution of .

Solution
First we find the solution of the homogeneous equation. The characteristic equation is . So, the roots are 

 and the solution is .

We next need a particular solution. Let’s guess . Inserting the guess into the nonhomogeneous differential
equation, we have

So, . Therefore, the general solution of the problem is

Find the solution of .

Solution

r(r−1) −r+5 = 0,

−2r+5 = 0r2

= 1 ±2r1,2

y(x) = x ( cos(2 ln |x|) + sin(2 ln |x|))c1 c2

12.4.1

,r1 r2

y(x) = +c1x
r1 c2x

r2

= = rr1 r2

ln|x|xr

y(x) = ( + ln|x|)c1 c2 xr

, = α± iβr1 r2

cos(βln|x|)xα sin(βln|x|)xα lin

y(x) = ( cos(βln|x|) + sin(βln|x|))xα c1 c2

 Example 12.4.4

−x −3y = 2x2y′′ y′ x2

−2r−3 = 0r2

r = −1, 3 (x) = +yh c1x−1 c2x3

(x) = Ayp x2

2x2 = −x −3y = 2x2y′′ y′ x2

= 2A −2A −3Ax2 x2 x2

= −3A .x2 (12.4.6)

A = −2/3

y(x) = + − .c1x
−1 c2x

3 2

3
x2

 Example 12.4.5

−x −3y = 2x2y′′ y′ x3
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In this case the nonhomogeneous term is a solution of the homogeneous problem, which we solved in the last example. So, we
will need a modification of the method. We have a problem of the form

where  is a solution of ar . Let’s guess a solution of the form . Then one finds that the
differential equation reduces to  . [You should verify this for yourself.]

With this in mind, we can now solve the problem at hand. Let . Inserting into the equation, we obtain 
, or . The general solution of the problem can now be written as

Find the solution of  using Variation of Parameters.

Solution
As noted in the previous examples, the solution of the homogeneous problem has two linearly independent solutions, 

 and . Assuming a particular solution of the form , we need to
solve the system (12.3.23):

From the first equation of the system we have . Substituting this into the second equation gives 
 So,  and, therefore, . The particular solution is

Adding this to the homogeneous solution, we obtain the same solution as in the last example using the Method of
Undetermined Coefficients. However, since  is a solution of the homogeneous problem, it can be absorbed into the first
terms, leaving

This page titled 12.4: Cauchy-Euler Equations is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell
Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

a +bx +cy = d ,x2y′′ y′ xr

r (r−1) +br+c = 0 y = A lnxxr

A (2ar−xr a+b) = dxr

= A lnxyp x3

4A = 2x3 x3 A = 1/2

y(x) = + + lnx.c1x
−1 c2x

3 1

2
x3

 Example 12.4.6

−x −3y = 2x2y′′ y′ x3

(x) =y1 x−1 (x) =y2 x3 (x) = (x) (x) + (x) (x)yp c1 y1 c2 y2

(x) + (x)c′
1 x−1 c′

2 x3

− (x) +3 (x)c′
1 x−2 c′

2 x2

= 0

= = 2x.
2x3

x2
(12.4.7)

(x) = − (x)c′
1 x4c′

2

(x) = .c′
2

1
2x

(x) = ln |x|c2
1
2

(x) =c1
1
8
x4

(x) = (x) (x) + (x) (x) = + ln |x|.yp c1 y1 c2 y2
1

8
x3 1

2
x3

1
8
x3

y(x) = + + lnx.c1x
−1 c2x

3 1

2
x3
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12.5: Problems

Find all of the solutions of the first order differential equations. When an initial condition is given, find the particular solution
satisfying that condition.

a. .

b. .

c. .
d. .
e. .
f. .
g. 
h. .
i. .

j. .

Consider the differential equation

a. Find the 1-parameter family of solutions (general solution) of this equation.
b. Find the solution of this equation satisfying the initial condition . Is this a member of the 1-parameter family?

Identify the type of differential equation. Find the general solution and plot several particular solutions. Also, find the singular
solution if one exists.

a. .
b. .
c. .
d. .

Find all of the solutions of the second order differential equations. When an initial condition is given, find the particular
solution satisfying that condition.

a. .
b. .
c. .
d.  for .

Verify that the given function is a solution and use Reduction of Order to find a second linearly independent solution.

a. .
b. .

 Exercise 12.5.1

=
dy

dx

ex

2y

= (1 + ) , y(0) = 1
dy

dt
y2 t2

=
dy

dx

1−y2√

x

x = y(1 −2y), y(1) = 2y′

−(sinx)y = sinxy′

x −2y = , y(1) = 1y′ x2

+2s = s , , s(0) = 1.ds

dt
t2

−2x = tx′ e2t

+y = sinx, y(0) = 0
dy

dx

− y = , y(1) = 4
dy

dx

3
x x3

 Exercise 12.5.2

= − .
dy

dx

x

y

x

1 +y

y(0) = 1

 Exercise 12.5.3

y = x +y′ 1
y ′

y = 2x +lny′ y′

+2xy = 2xy′ y2

+2xy =y′ y2ex
2

 Exercise 12.5.4

−9 +20y = 0y′′ y′

−3 +4y = 0, y(0) = 0, (0) = 1y′′ y′ y′

8 +4 +y = 0, y(0) = 1, (0) = 0y′′ y′ y′

− −6x = 0x′′ x′ x = x(t)

 Exercise 12.5.5

−2x −4y = 0, (x) =x2y′′ y′ y1 x4

x − +4 y = 0, (x) = sin( )y′′ y′ x3 y1 x2
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Prove that  and  are linearly independent solutions of . Write 
 as a linear combination of  and .

Consider the nonhomogeneous differential equation .

a. Find the general solution of the homogenous equation.
b. Find a particular solution using the Method of Undetermined Coefficients by guessing .
c. Use your answers in the previous parts to write down the general solution for this problem.

Find the general solution of the given equation by the method given.

a. . Method of Undetermined Coefficients.
b. . Variation of Parameters.

Use the Method of Variation of Parameters to determine the general solution for the following problems.

a. .
b. .

Instead of assuming that  in the derivation of the solution using Variation of Parameters, assume that 
 for an arbitrary function  and show that one gets the same particular solution.

Find all of the solutions of the second order differential equations for .. When an initial condition is given, find the
particular solution satisfying that condition.

a. .
b. .
c. .
d. .
e. .

This page titled 12.5: Problems is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

 Exercise 12.5.6

(x) = sinhxy1 (x) = 3 sinhx−2 coshxy2 −y = 0y′′

(x) = coshxy3 y1 y2

 Exercise 12.5.7

−3 +2x = 6x′′ x′ e3t

(t) = Axp e3t

 Exercise 12.5.8

−3 +2y = 10y′′ y′

+ = 3y′′ y′ x2

 Exercise 12.5.9

+y = tanxy′′

−4 +4y = 6xy′′ y′ e2x

 Exercise 12.5.10

+ = 0c′
1y1 c′

2y2

+ = h(x)c′
1y1 c′

2y2 h(x)

 Exercise 12.5.11

x > 0

+3x +2y = 0x2y′′ y′

−3x +3y = 0x2y′′ y′

+5x +4y = 0x2y′′ y′

−2x +3y = 0x2y′′ y′

+3x −3y =x2y′′ y′ x2
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